[scipy] scipy.sparse.save_npz | csr_matrix | .todense()

本文介绍了如何利用Scipy库将numpy矩阵转换为压缩稀疏列(CSR)格式,并进行存储和加载。通过`scipy.sparse.csr_matrix`函数转换矩阵,然后使用`scipy.sparse.save_npz`和`scipy.sparse.load_npz`进行文件操作。最后,展示了如何将CSR矩阵转回dense(numpy)形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import scipy
from scipy import sparse
from scipy.sparse import csr_matrix

# Mat_np #numpy形式
Mat_np = csr_matrix(Mat_np)  # 转为csr形式
scipy.sparse.save_npz('.npz', Mat_np)  # 存放csr形式的文件

self.Mat_np= scipy.sparse.load_npz('.npz')  # 加载csr形式的文件
Mat_dense = self.Mat_np.todense()  # 转为dense形式(转回numpy形式)

numpy需要转为csr等形式(scipy.sparse),scipy.sparse进行存储,不能直接存储numpy形式。.todense()转回numpy形式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值