论文阅读
文章平均质量分 69
简单对论文阅读思路及相关基础模型进行记录。
让我安静会
这个作者很懒,什么都没留下…
展开
-
[基础学习] 因果推理·学习资源整理
Brady Neal《因果推理导论》:YoutubeBilibili课程主页课程笔记·博客原创 2023-06-12 20:48:14 · 378 阅读 · 0 评论 -
[论文阅读] CKAN: Collaborative Knowledge-aware Atentive Network for Recommender Systems
原文:CKAN代码:https://github.com/weberrr/CKANWhat: 提出CKAN,一种将协作信号与知识关联自然结合的方法。Why: 现有方法只是关注了KG中的知识关联(knowledge associations),忽略了协作信号( collaborative signals),这往往是user-item交互中缺乏的。How: 提出异质传播策略,将两种信息自然的编码,再应用知识感知的注意机制来区分不同的基于知识的邻居的贡献。Result:Conclusion:CKAN提出原创 2022-07-03 13:06:03 · 1873 阅读 · 1 评论 -
[论文阅读] KGAT: Knowledge Graph Attention Network for Recommendation
原文:https://arxiv.org/pdf/1905.07854.pdf代码:https://github.com/xiangwang1223/knowledge_graph_attention_networkWhat: 为了提供更准确、多样化和可解释的建议,必须超越对用户-物品交互的建模,并考虑到附加信息(比如KG)。在本文中,我们研究了知识图(KG)的效用,它通过将项目与其属性联系起来,打破了独立交互假设。(通过将 KG 和user-item graph结合起来,捕捉高维连接)【高维连接:wh原创 2022-07-02 16:01:20 · 1022 阅读 · 0 评论 -
[模型基础] RNN | LSTM
RNN:在 t 时间点上将 t-1 时间点的隐节点 h(t-1) 作为当前时间点的输入(即每一个时间点的输出不仅仅取决于当前时间点的特征,还包括上一个时间点的信息)传统模型:每一个时间点的隐节点输出只取决于当前时间点的输入特征。每个时间点的隐因子:RNN问题:梯度爆炸解决方法:梯度截断,将超过某个阈值的梯度,截断到阈值(虽然改变了梯度,但是仍然可以保证loss下降)。而梯度消失,不能采用梯度截断方法来解决。因为长时间的依赖也会产生小的梯度,如果截断(会提高梯度值),对于模型而言,失去了捕捉长时间依赖的能力原创 2022-06-07 15:55:15 · 277 阅读 · 0 评论 -
[模型基础] 独热表示、表示学习(分布式表示)
将数据映射成低维向量,并由深度学习方法转为高维特征。低维向量可以用one-hot的独热表示,0、1表示的稀疏向量也可以用表示学习(分布式表示),表示成稠密实值向量参考:表示学习(Representation Learning):https://blog.csdn.net/weixin_40449300/article/details/89941348...原创 2022-03-07 23:07:32 · 903 阅读 · 0 评论 -
[模型基础] 卷积神经网络
二维卷积神经网络在宽度和高度两个方向上移动,要求:卷积核的通道数与输入通道数一致;卷积核的个数与输出通道数一致。效果如下:torch.nn.Conv2d(in_channel, out_channel, kernel_size,stride,bias,padding)其中,in_channel, out_channel, kernel_size必须得写。kernel_size1=3, 表示卷积核大小为3×3,kernel_size=(3×5),表示卷积核大小为3×5。卷积之后得到的wi原创 2022-01-07 11:27:39 · 793 阅读 · 0 评论 -
[模型基础] RNN及变体LSTM、GRU
1. RNNRNN被称为循环,因为它们对序列中的每个元素执行相同的任务,并且输出元素依赖于以前的元素或状态,RNN的输入和输出是可变的,并且在不停循环同样操作。循环公式有助于处理序列数据,因此RNN常用于处理序列数据。上述W权重共享,L是每一层/时间步的损失L,将所有损失相加得到整体损失。由于共享权重。每一步的误差梯度也取决于前一步的损失。上述例子中,为了计算第4步的梯度,需要将前3步的损失和第4步的损失相加。这称为Time-BPPT的反向传播。计算梯度是计算误差的过程,将loss值-梯度*学习率原创 2022-04-02 10:58:58 · 954 阅读 · 0 评论 -
[模型基础] 传统推荐算法
传统推荐算法中,主要包含:协同过滤算法 (CF)、基于内容的推荐、混合推荐。此外,还有常用的隐因子模型,因子分解机 (FM)。那么它们都有什么区别呢?协同过滤算法(物以类聚,人以群分)算法协同过滤算法包含两类:基于用户的协同过滤算法、基于物品的协同过滤算法。(1)基于用户的协同过滤算法,找到与该用户相似的其他用户,并把其他用户交互的物品推荐给该用户。(2)基于物品的协同过滤算法,找到与该用户交互物品相似的其他物品,并推荐给该用户。可以发现,协同过滤算法的中心思想是计算相似度,在一张庞大原创 2022-02-28 21:54:03 · 874 阅读 · 0 评论 -
[推荐系统实践_项亮] 第一章:好的推荐系统
【推荐系统实践】主要科普了到底什么是推荐系统,以及什么是一个好的推荐系统(1.1)其次向我们介绍了一些日常生活中常见的推荐系统(1.2 应用)推荐系统设计出来之后,怎么评判“好”呢,于是介绍了推荐系统的评测指标及维度(1.3)【什么是推荐系统?】在信息过载的背景下,人们有三种方式进行信息查找:1. 按照目录进行分类2. 搜索引擎3. 推荐系统但是1在信息越来越多的现在也变得不再使用,2需要用户有明确需求的时候进行查找,3是当用户没有明确需求时所使用的工具,所以2和3是相辅相成的。“推原创 2019-03-29 19:13:47 · 1259 阅读 · 0 评论 -
推荐系统与深度学习(博客系列记录)
石晓文:推荐系统遇上深度学习系列转载 2021-10-30 21:02:36 · 135 阅读 · 0 评论 -
[论文阅读] DMF: Deep Matrix Factorization Models for Recommender Systems
pdf: https://www.ijcai.org/proceedings/2017/0447.pdf[IJCAI2017]What: In this paper, we propose a novel matrix factorization model with neural network architecture.Why: Two recent works above exploit only implicit feedback for item recommendations instea原创 2019-05-29 09:55:08 · 2914 阅读 · 0 评论 -
[论文阅读] ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation
pdf: https://arxiv.org/abs/1711.06632[AAA2018]这篇文章是阿里和北大提出的基于注意力机制的用户异构行为建模框架,主要用于推荐任务。一个用户可以被Ta的历史行为所表示,但是由于用户行为是异构且动态的,难以建模。异构数据可以通过计算潜在空间的距离来表示,却没有一种可以将用户的异构行为进行表征的方法。此外,用户的历史行为可以看作一种序列数据,早期对序列数据的处理是人工提取特征,提取的特征不能充分的表示数据本身,同时需要太多的工作,而且聚合的特征可能会丢失与下游应原创 2019-07-10 10:30:00 · 1664 阅读 · 0 评论 -
[论文阅读] Complex Embeddings for Simple Link Prediction
pdf:http://proceedings.mlr.press/v48/trouillon16.pdfcode:https://github.com/ttrouill/complex[ICML2016]知识图谱可以看作是清洗过的知识库,包含实体、关系,其中实体包括头实体和尾实体。利用表示学习方法可以将实体、关系嵌入到低维实值向量中,并捕捉实体及关系中的复杂语义关系。这篇文章解决的是关系预测问题。模型二进制单一关系a single type of relation在两个实体之间的关系可以用一个原创 2022-03-08 00:39:44 · 1994 阅读 · 0 评论 -
[论文阅读] ANR: Aspect-based Neural Recommender
pdf原文 和 code【CIKM2018】这篇文章利用review数据,从aspect-level进行分析。主要基于下述三点进行模型的建立:【第一点】在评论中的所有词,并不都是同等重要的。(方面的重要性)【第二点】同样的一个词,在不同的情感方面,表达的含义不同。(多方面)【第三点】词往往和文中的上下文相关。(c超参)让一个user对items评论的所有词,表示该user;让一个item被所有users评论的所有词,表示该item。设置一个阈值num_word,例如500个词。模型分为3层:原创 2022-03-16 12:03:17 · 637 阅读 · 0 评论