Tensorflow中tf.keras.metrics.MeanIoU在shape不一致错误

当TensorFlow版本为2.4和2.5时,针对tf.keras.metrics.MeanIoU在计算IoU时出现的shape不一致错误,可以通过修改update_state函数处理one-hot编码的预测结果。网络输出的预测值是one-hot编码形式,而Label数据集使用了label-encode,这种情况下需要转换y_pred的格式以避免错误。
摘要由CSDN通过智能技术生成

TensorFlow版本:在2.4 和 2.5上这样改就可以(已测试)
还有其他版本好像是调用 call 方法实现的IoU,所以需要对应需要修改 call 函数

Tensorflow中tf.keras.metrics.MeanIoU在预测返回值为one-hot编码的情况下使用IoU

class MeanIoU(tf.keras.metrics.MeanIoU): 
    def update_state(self, y_true, y_pred, sample_weight=None
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值