OpenCV通过HSV颜色空间过滤图片及目标检测颜色空间范围确定

在目标检测中,我们可以通过卷积网络进行目标检测,但实际上,卷积网络并不能完全正确。所以,我们可以通过其它方式进行筛选,比如颜色空间


参考:

Image Segmentation Using Color Spaces in OpenCV + Python




目标的颜色空间范围确定


  • 通过matplotlib三维化所识别的目标颜色空间在HSV上的分布。然后设置lower_red以及upper_red设置颜色的阈值范围
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors
frame = cv2.imread("/home/rui/fire/demo.jpg")
# BGR空间转换到HSV颜色空间
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 分割通道
h, s
  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值