opencv如何确定图片中想要跟踪物体的HSV值范围

在学习opencv_python时,确定图片中物体的HSV值范围是关键。通过确定物体的HSV值,创建HSV进度条来调节,从而找到精确的HSV范围。例如,对于蓝色,HSV值为[120,255,255],可以通过调节进度条确定下限,最终得到蓝色物体的HSV范围为lower=[91,13,38],upper=[122,255,255]。" 88856124,8343772,解决Python安装scikit-learn的网络报错问题,"['Python', '机器学习', '数据科学', '库安装', '网络配置']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这几天在学习opencv_python时遇到不知如何确定图片要跟踪物体HSV范围的情况,几经查找和总结,终于找到了相对精确的办法。

思路如下:先确定图片中物体的HSV值,然后创建HSV进度条(H、S、V最大最小值共6条进度条),通过调节进度条,确定HSV范围。

一、用如下方法确定想要颜色的HSV值,比如蓝色。

import cv2
import numpy as np

blue = np.uint8([[[255,0,0]]])

hsv_blue = cv.cvtColor(blue, cv.COLOR_BGR2HSV)

print(hsv_blue)

#输出结果为: [[[ 120 255 255]]]

二、创建一个HSV上下阈值的六个进度条(h_min,h_max,s_min,s_max,v_min,v_max)并输出原图、掩模图、效果图。

import cv2
import numpy as np
import time

def nothing(x):

    pass

cv2.namedWindow('image',cv2.WINDOW_AUTOSIZE)

blue = np.uint8([[[255,0,0]]])

hsv_blue = cv2.cvtColor(blue,cv2.COLOR_BGR2HSV)

print(hsv_blue)

cv2.createTrackbar('Hue min','image',10,179,nothing)

cv2.createTrackbar('Hue max','image',10,179,nothing)

cv2.createTrackbar('sat min','image',10,255,nothing)

cv2.createTrackba
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值