机器学习降维之奇异值分解(SVD)

本文深入探讨奇异值分解(SVD),它是机器学习中的重要算法,广泛应用于降维、推荐系统和自然语言处理。SVD对非方阵进行分解,通过U、Σ、V矩阵表示。当矩阵为方阵时,SVD与特征分解相关联。文章通过实例解释SVD的计算过程,并讨论其在PCA中的应用和优势。
摘要由CSDN通过智能技术生成

奇异值分解(Singular Value Decompostion, SVD) 是在机器学习领域广泛应用的算法,不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域,是很多机器学习算法的基石。本篇文章对SVD原理做主要讲解,在学习之前,确保你已经熟悉线性代数中的基本知识,包括特征值、特征向量、相似矩阵相关知识点。如果不太熟悉的话,推荐阅读如下两篇文章,如何理解矩阵特征值?知乎马同学的回答如何理解相似矩阵?马同学高等数学,读完之后再看本篇文章会有很大帮助。

1. 回顾特征值和特征向量

我们首先回顾下特征值和特征向量的定义,如下所示。其中A是一个n×n的矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,x是矩阵A的特征值λ所对应的特征向量。但是求出特征值和特征向量有什么好处呢?
A x = λ x Ax = \lambda x Ax=λx
求出了矩阵A的n个特征值 λ 1 ≤ λ 2 ≤ . . . ≤ λ n \lambda_1 \le \lambda_2 \le ...\le \lambda_n λ1λ2...λn,以及这n个特征值所对应的特征向量 w 1 , w 2 , . . . , w n {w_1,w_2,...,w_n} w1,w2,...,wn,如果这n个特征值线性无关,那么矩阵A就可以用下式的特征分解表示
A = W Σ W − 1 A = W \Sigma W^{-1} A=WΣW1
其中Σ是以这n个特征值为主对角线的n×n维矩阵,W是这n个特征向量所组成的n×n维矩阵。一般我们会把W的这n个特征向量标准化,即满足 ∣ ∣ w i ∣ ∣ 2 = 1 ||w_i||_2 = 1 wi2=1,或者说 w i T w i = 1 w_i^Tw_i = 1 wiTwi=1,此时W的n个特征向量为标准正交基,满足 W T W = I W^TW = I WTW=I,即 W T = W − 1 W^T = W^{-1} WT=W1,也就是说W为酉矩阵。这样我们的特征分解便可写作
A = W Σ W T A = W \Sigma W^T A=WΣWT
上面矩阵能够进行特征分解,需要满足矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以进行矩阵分解吗?

2. 奇异值分解(SVD)

当矩阵A不是方阵时,可以用奇异值进行分解,假设我们的的矩阵A时一个m×n的矩阵,那么我们定义矩阵A的SVD为
A = U Σ V T A = U \Sigma V^T A=UΣVT
其中U时一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V时一个n×n的矩阵。U和V都是酉矩阵,即满足
U T U = I V T V = I U^TU=I \\ V^TV = I UTU=IVTV=I
下图可以形象的表示出上述SVD的定义,但我们如何求出SVD分解后的U,Σ,V这三个矩阵呢?
图片01
如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵 A T A A^TA ATA。既然 A T A A^TA ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式
( A T A ) v i = λ i v i (A^TA)v_i = \lambda_i v_i (ATA)vi=λivi
这样我们就可以得到矩阵 A T A A^TA ATA的n个特征值和对应的n个特征向量v。将 A T A A^TA ATA的所有特征向量组成一个n×n的矩阵V,就是SVD公式里面的V矩阵,一般我们将V中的每个特征向量叫做A的右奇异向量。

同样,如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵 A A T AA^T AAT。因为 A A T AA^T AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式
( A A T ) u i = λ i u i (AA^T)u_i = \lambda_i u_i (AAT)ui=λiui
这样我们就可以得到矩阵 A A T AA^T AAT的m个特征值和对应的m个特征向量u。将 A A T AA^T AAT的所有特征向量组成一个m×m的矩阵U,就是SVD公式里面的U矩阵,一般我们将U中的每个特征向量叫做A的左奇异向量。

U和V都已经求出,现在只有奇异值矩阵Σ没有求出。由于Σ除了对角线上是奇异值,其他位置都是0,因此我们只需要求出每个奇异值σ就可以了。我们注意到
A = U Σ V T A V = U Σ V T V A V = U Σ A v i = u i σ i σ i = A v i u i A = U \Sigma V^T \\ AV = U \Sigma V^T V \\ AV = U \Sigma \\ Av_i = u_i \sigma_i \\ \sigma_i = \frac{Av_i}{u_i} A=UΣVTAV=UΣVTVAV=UΣAvi=uiσiσi=uiAvi
通过上式,我们便可以求出每个奇异值,进而求出奇异值矩阵Σ。

上面还有一个问题没有细讲,就是我们说 A T A A^TA ATA的特征向量组成的就是SVD中的V矩阵, A A T AA^T AAT的特征向量就是SVD的U矩阵,为什么呢?下面我们做简短证明。
A = U Σ V T A T = V Σ T U T A T A = V Σ T U T U Σ V T = V Σ 2 V T A = U \Sigma V^T \\ A^T = V \Sigma^T U^T \\ A^TA = V\Sigma^T U^T U \Sigma V^T = V \Sigma^2V^T A=UΣVTAT=VΣTUTATA=VΣ

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值