CNN卷积神经网络总结

本文介绍了CNN与DNN的区别,强调了CNN在处理复杂图像数据时的优势,主要在于参数数量的减少。CNN的核心包括输入层、卷积层、池化层、全连接层和Softmax层,其中卷积层和池化层通过局部感受野、权值共享等机制减少参数,提高模型效率。此外,文章还详细讨论了卷积操作、Padding、3-d卷积和Pooling的细节,阐述了它们在处理图像数据中的作用。
摘要由CSDN通过智能技术生成

1 DNN和CNN

1.1 DNN(Deep Neural Networks,深度神经网络)

DNN是一个全连接的深度神经网络,也可以用作图像识别,在mnist上的表现也很不错,可以参考这篇文章。鉴于为了介绍CNN和DNN的区别,在这篇文章中都叫做全连接神经网络。全连接神经网络中,每相邻的两层网络之间的节点都是相互有边相连。上一层的每个神经元均要链接下一层的每个神经元,于是一般将每一层的神经元排成一排,如图所示:

而对于卷积神经网络,相邻的两个网络层之间只有部分节点相连,为了方便展示神经元的维度,一般会展示成三维矩阵的形式。如图所示:

对于输入输出而言,卷积神经网络与全连接神经网络十分大同小异。输入是图像的原始像素,输入的三维矩阵的长和宽分别是图片的长宽像素数,高是图像的通道数,对于黑白的图像来说,通道数就是1,对于RGB的图像来说,通道数就是3。输入的矩阵中间经过一系列的卷积池化等操作进入全连接层,以softmax为例,输出为各个分类的概率大小。

卷积神经网络与全连接神经网络最主要的区别就是网络层与层神经元之间的链接方式不同。全连接神经网络的链接方式是层与层之间的每个神经元均相互连接,而卷积神经网络的相邻的两个网络层之间只有部分节点相连。

卷积神经网络在图像领域的效果十分突出,上面也提到了,全连接神经网络对于MNIST数据集的识别效果也十分好,那么,为什么要引入CNN,或者使用CNN的好处是什么?

最简单的回答就是,全连接神经网络无法很好的处理复杂的图片数据(这里复杂的图片数据指的是,像素高,颜色通道多的图片),因为使用全连接神经网络最大的一个问题就是,全连接神经网络的参数太多。任意两个神经元相连就会产生一个参数。例如MNIST数据集的输入神经元有28*28=784个,假设数据为28*28像素的单通道图像数据,有一个单隐层且隐层神经元有500个的全连接神经网络,此时参数就有28*28*1*500+500 = 392500个参数,参数多达将近40万个;如果把数据换为CIFAR-10的数据,32*32像素且有RGB3个通道,仍然是有一个单隐层且隐层神经元有500个的全连接神经网络,32*32*3*500+500,参数多达将近150万个,对于一个简单的网络结构,就有如此多的参数会使神经网络训练十分慢,而且参数过多相比数据量不足,很容易导致过拟合。因此引入了卷积神经网络,使用另一种方式减少层与层之间的连接,大大减少参数数量。

1.2 简述CNN结构(Convolutional Neural Networks,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值