**
DNN、CNN、RNN、LSTM的区别,最全最详细解答
**
神经网络的变种目前有,
如误差反向传播(Back Propagation,BP)神经网路、
概率神经网络、
RNN-循环神经网络
DNN-深度神经网络
CNN-卷积神经网络(-适用于图像识别)、
LSTM-时间递归神经网络(-适用于语音识别)等。
但最简单且原汁原味的神经网络则是
多层感知器(Muti-Layer Perception ,MLP)。
MLP神经网络的结构和原理
最典型的MLP包括包括三层:输入层、隐层和输出层,MLP神经网络不同层之间是全连接的(全连接的意思就是:上一层的任何一个神经元与下一层的所有神经元都有连接)。


由此可知,神经网络主要有三个基本要素:权重、偏置和激活函数
权重:神经元之间的连接强度由权重表示,权重的大小表示可能性的大小
偏置:偏置的设置是为了正确分类样本,是模型中一个重要的参数,即保证通过输入算出的输出值不能随便激活。
激活函数:起非线性映射的作用,其可将神经元的输出幅度限制在一定范围内,一般限制在(-1~1)或(0~1)之间。最常用的激活函数是Sigmoid函数,其可将(-∞,+∞)的数映射到(0~1)的范围内。
MLP的最经典例子就是数字识别,即我们随便给

本文详细介绍了DNN、CNN、RNN、LSTM的区别,DNN存在参数数量多、局部最优、梯度消失等问题;CNN通过卷积核减少参数,适合图像识别;RNN用于处理序列数据,但存在梯度消失问题,LSTM则通过门控机制解决此问题。此外,还讨论了各种网络结构在NLP领域的优劣。
最低0.47元/天 解锁文章
6154

被折叠的 条评论
为什么被折叠?



