题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878
欧拉回路
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 15109 Accepted Submission(s): 5771
Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
Sample Output
1 0//判断是否存在欧拉回路 //无向图G存在欧拉通路的充要条件是: //G为连通图,并且G仅有两个奇度结点(度数为奇数的顶点)或者无奇度结点。 //有向图D存在欧拉通路的充要条件是: //D为有向图,D的基图连通,并且所有顶点的出度与入度相等; //或者 除两个顶点外,其余顶点的出度与入度都相等, //而这两个顶点中一个顶点的出度与入度之差为1,另一个顶点的出度与入度之差为-1. //无向图G存在欧拉回路的充要条件是: //G为连通图,并且G无奇度结点。 //有向图D存在欧拉回路的充要条件是: //D为有向图,D的基图连通,并且所有顶点的出度与入度相等; #include <stdio.h> #include <string.h> #include <algorithm> #define maxn 1110 using namespace std; int vis[maxn]; int edge[maxn][maxn]; int num[maxn]; int N; void dfs(int top) { vis[top] = 1; for(int i=1; i<=N; i++) if(edge[top][i]&&!vis[i]) dfs(i); } int main() { while(scanf("%d", &N), N) { int M; scanf("%d", &M); memset(vis, 0, sizeof(vis)); memset(num, 0, sizeof(num)); memset(edge, 0, sizeof(edge)); for(int i=0; i<M; i++) { int a, b; scanf("%d%d", &a, &b); //这里需注意,我wa了3发才发现,就是说,可以多次输入同样的a和b, 即a和b之间是有多条路的 num[a]++; num[b]++; edge[a][b] = edge[b][a] = 1; } int ok = 1; for(int i=1; i<=N; i++) { if(num[i]%2) { ok = 0; break; } } if(ok==0) printf("0\n"); else { dfs(1); for(int i=1; i<=N; i++) if(vis[i]==0) { ok = 0; break; } printf("%d\n", ok); } } return 0; }
推荐欧拉回路学习地址:http://blog.csdn.net/nameix/article/details/52288755