图论中的欧拉回路

本文介绍了图论中的一笔画定理,即欧拉回路的概念,详细阐述了如何判断无向图和有向图是否具有欧拉通路或回路,并给出了相关实例,如七桥问题和中文“串”字的一笔画可能性。符合条件的图可以一笔画成,否则不能。此外,文章还提及了欧拉回路在汉字结构分析中的应用。
摘要由CSDN通过智能技术生成

1.1先说说一笔画定理

  1736年,欧拉发表了“一笔画定理”(并且证明了七桥问题的走法根本不存在)

  一个图形要能一笔画完成必须符合两个条件,即

            A.图形是封闭连通的

            B.图形中的奇点(与奇数条边相连的点)个数为0或2。(即图中度为奇数的顶点个数为0或2)

  注:

          奇顶点: 顶点所连边为奇数的顶点

          偶顶点:顶点所连边为偶数的顶点

2.1一笔画定理用图论的术语来说,

           就是判断这个图是否是一个能够遍历完所有的边而没有重复。这样的图称为欧拉图。这时遍历的路径称作欧拉路径(一个

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值