图论中的欧拉回路

本文介绍了图论中的一笔画定理,即欧拉回路的概念,详细阐述了如何判断无向图和有向图是否具有欧拉通路或回路,并给出了相关实例,如七桥问题和中文“串”字的一笔画可能性。符合条件的图可以一笔画成,否则不能。此外,文章还提及了欧拉回路在汉字结构分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.1先说说一笔画定理

  1736年,欧拉发表了“一笔画定理”(并且证明了七桥问题的走法根本不存在)

  一个图形要能一笔画完成必须符合两个条件,即

            A.图形是封闭连通的

            B.图形中的奇点(与奇数条边相连的点)个数为0或2。(即图中度为奇数的顶点个数为0或2)

  注:

          奇顶点: 顶点所连边为奇数的顶点

          偶顶点:顶点所连边为偶数的顶点

2.1一笔画定理用图论的术语来说,

           就是判断这个图是否是一个能够遍历完所有的边而没有重复。这样的图称为欧拉图。这时遍历的路径称作欧拉路径(一个或者一条链),如果路径闭合(一个圈),则称为欧拉回路

2.2.1.无向图是否具有欧拉通路或回路的判定:(这里的通路指首尾不像接,一条链)

欧拉通路:图连通;图中只有2个度为奇数的节点(就是欧拉路径的2个端点)

欧拉回路:图连通;图中所有节点度均为偶数

2.2.2.有向图是否具有欧拉通路或回路的判定:(这里的通路指首尾不像接,一条链)

欧拉通路:图连通;除2个端点外其余节点入度=出度;1个端点入度比出度大1;一个端点入度比出度小1

欧拉回路:图连通;所有节点入度=出度

2.3画一笔画的规律

  ■⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
  ■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。
  ■⒊其他情况的图都不能一笔画出。(有偶数个奇点除以二便可算出此图需几笔画成。)
  比如附图:(a)为(1)情况,因此可以一笔画成;(b)(c)(d)则没有符合以上两种情况,所以不能一笔画成。

          

3.1举例

3.1.1七桥问题(这是七桥问题的抽象)


上图一是七桥问题抽象化後得到的模型,由四个顶点和七条边组成。注意到四个顶点全是奇顶点,由定理一可知无法一笔画成。


3.1.2中国汉字

上图是中文“串”字抽象化後得到的模型。由于只有最上方和最下方的顶点是奇顶点,由定理一知它可以一笔画成。



参考:

[1] 欧拉回路  http://zh.wikipedia.org/wiki/%E6%AC%A7%E6%8B%89%E5%9B%9E%E8%B7%AF

[2]  一笔画问题  http://baike.baidu.com/view/429465.htm


转载本文请注明作者和出处[Gary的影响力]http://garyelephant.me,请勿用于任何商业用途!

Author: Gary Gao 关注互联网、分布式、高并发、自动化、软件团队
支持我的工作: 
https://me.alipay.com/garygao

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值