基于深度学习的文本信息提取方法研究(pytorch python textcnn框架)

💗博主介绍💗:✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计
温馨提示:文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :)

Java精品实战案例《700套》

2025最新毕业设计选题推荐:最热的500个选题o( ̄▽ ̄)d

介绍

近年来,随着信息技术的发展,海量文本数据带来了信息提取与处理的挑战。传统方法复杂且准确率有限,因此深度学习技术备受关注。其中,卷积神经网络(CNN)作为一种强大的特征学习和模型表达工具,在文本信息提取中发挥了重要作用。

本文通过综述深度学习技术在文本信息提取中的应用现状,系统介绍了TextCNN模型在文本分类、文本摘要生成、命名实体识别、关键词抽取和实体关系抽取等方面的应用。针对深度学习模型在文本信息提取中的优势和挑战,结合实验设计和模型性能评估,探讨了如何有效地利用深度学习技术解决文本信息提取中的关键问题。最后,通过案例分析和未来展望,展示了深度学习在文本信息提取领域的应用前景和发展趋势。

关键词文本信息提取;深度学习技术;自然语言处理;模型性能评估

演示视频

基于深度学习的文本信息提取方法研究(pytorch python textcnn框架)_哔哩哔哩_bilibili

系统功能

4 方法设计

在方法设计章节中,将深入探讨该文本分类系统的整体架构、模块设计和关键技术选型。通过方法设计,旨在构建一个高效、可扩展且具备良好性能的文本分类系统,以满足实际应用中的需求。本章将详细介绍系统的设计思路、各个模块的功能和交互方式,并阐述的设计理念和技术选择原因,希望能为读者提供清晰的系统概览和设计思路。

4.1  数据集设计

4.1.1  THUCNews文本数据集

THUCNews数据集是系统中用于训练和评估的重要数据源之一。它是根据新浪新闻RSS订阅频道2005~2011年间的历史数据筛选过滤生成的,总计包含74万篇新闻文档,总体大小为2.19 GB,所有文档均为UTF-8纯文本格式。基于原始新浪新闻分类体系重新整合划分了14个候选分类类别,涵盖了财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏和娱乐等领域。

在系统中,利用THUCNews数据集进行模型训练和评估,使用THUCTC工具包对模型性能进行评测。通过在此数据集上进行训练,的模型在中文文本分类任务上取得了不错的准确率,为系统的文本信息提取功能提供了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全职计算机毕业设计

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值