毕业bg(动态规划,0/1背包问题)

原创 2018年04月16日 20:55:37

题目描述

    每年毕业的季节都会有大量毕业生发起狂欢,好朋友们相约吃散伙饭,网络上称为“bg”。参加不同团体的bg会有不同的感觉,我们可以用一个非负整数为每个bg定义一个“快乐度”。现给定一个bg列表,上面列出每个bg的快乐度、持续长度、bg发起人的离校时间,请你安排一系列bg的时间使得自己可以获得最大的快乐度。     例如有4场bg:     第1场快乐度为5,持续1小时,发起人必须在1小时后离开;     第2场快乐度为10,持续2小时,发起人必须在3小时后离开;     第3场快乐度为6,持续1小时,发起人必须在2小时后离开;     第4场快乐度为3,持续1小时,发起人必须在1小时后离开。     则获得最大快乐度的安排应该是:先开始第3场,获得快乐度6,在第1小时结束,发起人也来得及离开;再开始第2场,获得快乐度10,在第3小时结束,发起人正好来得及离开。此时已经无法再安排其他的bg,因为发起人都已经离开了学校。因此获得的最大快乐度为16。     注意bg必须在发起人离开前结束,你不可以中途离开一场bg,也不可以中途加入一场bg。 又因为你的人缘太好,可能有多达30个团体bg你,所以你需要写个程序来解决这个时间安排的问题。

输入描述:

    测试输入包含若干测试用例。每个测试用例的第1行包含一个整数N (<=30),随后有N行,每行给出一场bg的信息:
    h l t
    其中 h 是快乐度,l是持续时间(小时),t是发起人离校时间。数据保证l不大于t,因为若发起人必须在t小时后离开,bg必须在主人离开前结束。

    当N为负数时输入结束。

输出描述:

    每个测试用例的输出占一行,输出最大快乐度。
示例1

输入

3
6 3 3
3 2 2
4 1 3
4
5 1 1
10 2 3
6 1 2
3 1 1
-1

输出

7
16

题目解析:其实质上相当于动态规划里的背包问题。

用dp[i][j]表示前i个bg在进行了j时间时的最大快乐度(bg进行的时间总和不大于发起人中的最晚离开时间tmax)
dp[i][j]=max{ dp[i-1][j],  dp[i-1][j-bg[i].l]+bg[i].h  },    j-bg[i].l>=0 && j<=bg[i].t
dp[0][i]=dp[i][0]=0;
最后要求的是max{dp[n][0]--dp[n][tmax]}
bg的选择特点是发起人离开时间更早的bg会更先被举行,所以先对离开时间 t 排序


代码如下:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define MAX 10005
struct node{
    int h,l,t;
}a[32];
bool cmp(node a,node b){
    return a.t<b.t;
}
int main(){
    int n,i,j,dp[32][105];
    while(scanf("%d",&n)!=EOF){
        if(n<0)
            break;
        for(i=1;i<=n;i++){
            scanf("%d %d %d",&a[i].h,&a[i].l,&a[i].t);
            dp[i][0]=0;
        }
        sort(a+1,a+n+1,cmp);
        int tmax=a[n].t;
        for(i=0;i<tmax;i++)
            dp[0][i]=0;
        for(i=1;i<=n;i++)
            for(j=1;j<=tmax;j++){
                if(j-a[i].l>=0&&j<=a[i].t)
                    dp[i][j]=dp[i-1][j]>(dp[i-1][j-a[i].l]+a[i].h)?dp[i-1][j]:(dp[i-1][j-a[i].l]+a[i].h);
                else
                    dp[i][j]=dp[i-1][j];
            }
        int x=dp[n][1];
        for(i=2;i<=tmax;i++)
            if(x<dp[n][i])
               x=dp[n][i];


        printf("%d\n",x);
    }
    return 0;
}

HTML5 + CSS3 从 0 到 1 实战详解

课程采用「最少必要知识 + 实例刻意练习」的学习方法,通过实例步步详解、模块刻意训练快速学习HTML5、CSS3开发响应式页面的技能。 课程摆脱传统瀑布学习方法,没有大量的语法说教。而以最少必要知识为基础,快速上手开发,在实例中迭代学习。
  • 2017年06月11日 15:53

动态规划—0-1背包问题(最易理解的讲解)

0-1背包问题是最广为人知的动态规划问题之一,拥有很多变形。尽管在理解之后并不难写出程序,但初学者往往需要较多的时间才能掌握它。小编写这篇文章力争做到用通俗易懂的语言,最少的公式把0-1背包问题讲解透...
  • u010293698
  • u010293698
  • 2015-10-08 22:50:34
  • 3464

动态规划:0/1背包问题

动态规划:0/1背包问题 1、问题简介 2、方法      动态规划,主要用到的公式见下面(符号意思见代码处解释) 3、详细代码实现 4、效果截屏 3、解决代码 // 动态规划法求0/1背包问题 /...
  • u010043538
  • u010043538
  • 2015-11-19 22:59:12
  • 1243

动态规划之详细分析0-1背包问题

题目:   有 N 件物品和一个容量为 V 的背包。第 i 件物品的费用是 w[i],价值是 p[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。   本文按照动态规...
  • Hearthougan
  • Hearthougan
  • 2016-12-26 01:50:32
  • 5947

动态规划解决0/1背包问题

之前总结了利用穷举法,贪婪法解决0/1背包的方法,同时也通过Fibnacci介绍了动态规划,那么该如何来利用动态规划来解决0/1背包问题呢? 首先动态规划有两个条件; 如果可以把局部子问题的解结合...
  • changyuanchn
  • changyuanchn
  • 2016-05-18 20:12:51
  • 3335

python -- 0/1背包问题(动态规划-dict)

#! /usr/bin/env python3 # -*- coding: utf-8 -*- def getMaxValueOfPackage(N, C, W, V): # 商品的种类, 背包的容...
  • shentong1
  • shentong1
  • 2017-12-07 09:54:48
  • 347

经典算法(2)——0/1背包问题(动态规划法)

本博客(http://blog.csdn.net/livelylittlefish)贴出作者(三二一、小鱼)相关研究、学习内容所做的笔记,欢迎广大朋友指正!                      ...
  • livelylittlefish
  • livelylittlefish
  • 2008-03-16 00:07:00
  • 74951

动态规划法解决0-1背包问题(C++)

1.动态规划法的设计思想:动态规划法将待求解问题分解成若干个相互重叠的子问题,每个子问题对应决策过程的一个阶段,子问题的重叠关系一般表现在对给定问题求解的递推关系,将子问题的的解求解一次并且填入表中,...
  • qq_16467097
  • qq_16467097
  • 2015-11-15 16:22:07
  • 1520

0/1背包问题 - 动态规划(C++实现)

0 / 1背包问题 - 动态规划(C++实现)flyfish以下代码在VC++2013下编译通过#include "stdafx.h" #include #include #include st...
  • flyfish1986
  • flyfish1986
  • 2017-06-20 11:09:28
  • 593

总结——01背包问题 (动态规划算法)

0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。 问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?...
  • xp731574722
  • xp731574722
  • 2017-04-25 20:57:57
  • 24216
收藏助手
不良信息举报
您举报文章:毕业bg(动态规划,0/1背包问题)
举报原因:
原因补充:

(最多只允许输入30个字)