https://data.mendeley.com/datasets/rscbjbr9sj/2
1. Messidor
数据:1200
张彩色眼底图像,格式 .tif
,用于糖尿病视网膜病变检测,用于分类任务。
数据标注:Excel 文件,标注了每幅图像的:
- Diabetic Retinopathy grade 糖尿病视网膜病变等级(0 - 3)
- Risk of macular oedema 黄斑水肿的风险(0 - 2)
下载链接:Messidor
数据说明:1200 张图片分为 3 组,分别为来自不同眼科部门的数据,各 400 张图像;每组包含 4 个子压缩包,各子压缩包下分别有 100 张图像。
- Base11 - Base14,数据来源 Service Ophtalmologie Lariboisière
- Base21 - Base24,数据来源 CHU de St Etienne
- Base31 - Base34,数据来源 LaTIM - CHU de BREST
2. Messidor 2
数据:1748
张视网膜图像,是 Messidor 数据的扩展。
3. PALM
该数据集有四个任务,分别为:
- 任务 1:对 PM 和非 PM(包括 HM:高度近视和正常)眼底图像进行分类
- 任务2:视盘的检测与分割
- 任务3:中央凹的定位
- 任务4:病理性近视的两种典型病变的检测和分割
数据:1200
张彩色视网膜眼底图像,包括两个根文件夹 PALM-Training400 和 PALM-Validation400,分别用于训练和验证。
在根目录 PALM-Training400 下,包含三个子文件夹:
1. PALM-Training400: 包含 400 张 JPG 格式的原始图像,根据前缀字母可以分为 H0001 - H0026
,N0001 - N161
,P0001 - P0213
,P 表示 PM 类型(患病),H 表示 HM 类型(高度近视),N 表示正常类型。
2. PALM-Training400-Annotation-D&F:
- Disc_Fovea_Illustration:包含视盘位置、中央凹位置,分别表示为蓝色圆圈和红色十字叉
- Disc_Masks:视盘 mask,保存为
bmp
图像格式,其中视盘为 0(黑色),其他为 255(白色) - Fovea_Location.xlsx:每幅图像中央凹的位置,第一列对应眼底图像文件名,第二、三列为中央凹的 X 和 Y 坐标
3. PALM-Training400-Annotation-Lession:
数据标注:标注为 bmp 图像,像素 0 为光盘(黑色),像素 255 为其他(白色)
下载链接:iChallenge-PM
4. ORIGA-650
数据:650
张彩色眼底图像,其中有 168
幅青光眼和 482
幅非青光眼图像。来源 IMED 团队,用于青光眼检测和视盘视杯的分割。
下载链接:ORIGA-650
5. RIM-ONE
三个子数据集(RIM-ONE-R1,R2,R3),他们的数量分别是169,455和159张。
RIM-ONEv.3
6. DRION-DB
数据:111 张图像,RGB 格式,用于视觉神镜头的分割。图像分辨率为 600x400。用于注释文件中包含两位专家的标记结果,txt 文件中记录每位专家对每张图像的标记轮廓,包含了所有顶点的坐标。
数据主页:DRIONS-DB
下载链接:DRIONS-DB.rar
7. DRIVE
40张图像,33张+7张
8. DIARETDB0
对数字图像中的糖尿病性视网膜病变进行基准检测
130幅彩色眼底图像,20幅正常,110幅包含糖尿病性视网膜病变征兆
9. DIARETDB1
89张彩色眼底图像
下载链接:imageret/diaretdb1
EyePacs
糖尿病性视网膜病变等级,分类任务
Kaggle获取
35,126张图像
STARE
400张图像
视网膜血管
[1] https://github.com/CVxTz/medical_image_segmentation
[2] https://homes.esat.kuleuven.be/~mblaschk/projects/retina/
视盘视杯分割
https://www5.cs.fau.de/research/data/fundus-images/
https://data.mendeley.com/datasets/rscbjbr9sj/3
公共数据库DRIONS-DB,RIM-ONE v.3,DRISHTI-GS
彩色眼底图像数据集
IDRiD:
https://idrid.grand-challenge.org/Leaderboard/
https://www.retinai.com/research
https://github.com/mondejar/Retinal-OCT-state-of-art
https://sites.google.com/site/hosseinrabbanikhorasgani/datasets-1
https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z?locale=en
https://www.zhihu.com/question/53655758
https://dataverse.scholarsportal.info/dataverse/OCTID
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP/MBMQGD
https://www.openicpsr.org/openicpsr/project/108503/version/V1/view