给你一个整数数组 A,只有可以将其划分为三个和相等的非空部分时才返回 true,否则返回 false。
形式上,如果可以找出索引 i+1 < j 且满足 (A[0] + A[1] + ... + A[i] == A[i+1] + A[i+2] + ... + A[j-1] == A[j] + A[j-1] + ... + A[A.length - 1]) 就可以将数组三等分。
示例 1:
输出:[0,2,1,-6,6,-7,9,1,2,0,1]
输出:true
解释:0 + 2 + 1 = -6 + 6 - 7 + 9 + 1 = 2 + 0 + 1
示例 2:
输入:[0,2,1,-6,6,7,9,-1,2,0,1]
输出:false
示例 3:
输入:[3,3,6,5,-2,2,5,1,-9,4]
输出:true
解释:3 + 3 = 6 = 5 - 2 + 2 + 5 + 1 - 9 + 4
提示:
3 <= A.length <= 50000
-10^4 <= A[i] <= 10^4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/partition-array-into-three-parts-with-equal-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
package leetCodeTest;
public class 将数组分成和相等的三个部分 {
public static void main(String[] args) {
int a[] = {0,2,1,-6,6,-7,9,1,2,0,1};
final boolean b = canThreePartsEqualSum(a);
System.out.println("b = " + b);
}
/**
* 数组元素的总和 sum 不是3的倍数,直接返回false
* 使用双指针left,right, 从数组两头开始一起找,节约时间
* 当 left + 1 < right 的约束下,可以找到数组两头的和都是 sum/3,那么中间剩下的元素和就一定也是sum/3
* (left + 1 < right的约束就是要中间有剩下的元素,使用left < right的约束,
* 数组可能可以恰好被划分成两部分,中间没有元素)
*
* 作者:sugar-31
* 链接:https://leetcode-cn.com/problems/partition-array-into-three-parts-with-equal-sum/solution/java-shi-yong-shuang-zhi-zhen-by-sugar-31/
* 来源:力扣(LeetCode)
* 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
* @param A
* @return
*/
public static boolean canThreePartsEqualSum(int[] A) {
int sum = 0;
for(int i : A){
sum += i;
}
if(sum%3 != 0){
// 总和不是3的倍数,直接返回false
return false;
}
// 使用双指针,从数组两头开始一起找,节约时间
int left = 0;
int leftSum = A[left];
int right = A.length - 1;
int rightSum = A[right];
// 使用left + 1 < right 的原因,防止只能将数组分成两个部分
// 例如:[1,-1,1,-1],使用left < right作为判断条件就会出错
while(left + 1 < right){
if(leftSum == sum/3 && rightSum == sum/3){
// 左右两边都等于 sum/3 ,中间也一定等于
return true;
}
if(leftSum != sum/3){
// left = 0赋予了初值,应该先left++,在leftSum += A[left];
leftSum += A[++left];
}
if(rightSum != sum/3){
// right = A.length - 1 赋予了初值,应该先right--,在rightSum += A[right];
rightSum += A[--right];
}
}
return false;
}
}