机器学习|支持向量机SVM(四)

作   者:echoy189
介   绍:spark数据处理与算法交流
公众号:spark推荐系统

在上文中,我们了解了SVM处理线性(硬间隔/软间隔)可分的情况,而对于非线性的情况,SVM的处理方法是选择一个核函数K(),通过将数据映射到高维空间,来解决在原始低维空间中线性不可分的问题

目录

  1. 判别式函数另一种表达形

  2. SVM的升维

  3. 引入核函数

  4. 常用核函数

  5. SVM算法流程总结

  6. 代码展示

一)判别式函数另一种表达形

对于线性SVM来说,判别式函数

由于(线性可分SVM推导出w)  可参考 : 机器学习|支持向量机SVM(二)

所以可将判别式转换成下式:

可以得到结论:每点在计算判别函数结果时需要求得待判断点和所有训练集样本的内积

升维是一种处理线性不可分问题的方式,通常把原始的x映射到更高维空间ϕ(x)上

ϕ(x):指的是将x,通过函数变化映射到高维空间的函数

比如多项式回归:

可以将二元特征(x1,x2)映射为五元特征(x1,x2,x1²,x2²,x1x2)这样在五元空间中有些二元空间里线性不可分的问题就变得线性可分了

二)SVM的升维

对于线性SVM来说,最优化问题为:

如果使用ϕ(x) 对训练集升维,最优化问题就变成了:

看似这种升维方式已经完美解决了线性不可分问题,但是带来一个新的问题:

假设使用多项式回归的方式进行升维,对于二维x1,x2升维后的结果是x1,x2,x1²,x2²,x1x2变成五维;三维x1,x2,x3就变成了19维;假如10维 或更多就会导致维度爆炸。而且升维之后还需要做向量的内积,时间和空间都会消耗特别大

三)引入核函数

在svm学习过程中

只需求得ϕ(xi)▪ϕ(xj)的结果,并不需知道具体的ϕ(x)是什么,所以直接跳过ϕ(x),来定义ϕ(xi)▪ϕ(xj)的结果,这样既可以达到升维的效果,又可以避免维度爆炸的问题

定义K(x,z) = ϕ(x)▪ϕ(z)

此时,对偶问题的目标函数变为了:

判别式函数变为了:

四)常用核函数

1.线性核函数  K(x,z) = x▪z

这实际上是原始空间上面的内积,并没有达到升维效果。它存在的意见就是在sklearn中svm类中没有专门的线性可分和不可分,在这种通用的表达形式上通过核函数的选择来达到区分线性可不可分SVM 的目的

2.多项式核函数 K(x,z) = (γx▪z + r)ⁿ  

但是多项式核函数的参数多,当多项式的阶数比较高的时候,核矩阵的元素值将趋于无穷大或者无穷小,计算复杂度会大到无法计算

3.高斯核函数 K(x,z) = exp(-γ||x-z||²) (最常用)

高斯径向基函数是一种局部性强的核函数,其可以将一个样本映射到一个更高维的空间内,该核函数是应用最广的一个,无论大样本还是小样本都有比较好的性能,而且其相对于多项式核函数参数要少,因此大多数情况下在不知道用什么核函数的时候,优先使用高斯核函数

4.sigmoid核函数 K(x,z) = tanh(γx▪z + r)

采用sigmoid核函数,支持向量机实现的就是一种多层神经网络

五)SVM算法流程总结

1.选择某个核函数及对应的超参数

2.选择惩罚系数C

3.构造最优化问题

4.利用SMO算法求解一组α

5.根据α计算w

 

6.根据α找到全部支持向量,计算每个支持向量对应的b

7.对b 求均值得到最终的b

学的超平面为:

 

最终的判别函数为:

 

六)代码展示

目的:将线性不可分的数据变为线性可分;

方法:一维数据升到二维

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-4, 5, 1)
y = np.array((x >= -2) & (x <= 2), dtype='int')

plt.scatter(x[y == 0], [0] * len(x[y == 0]))
plt.scatter(x[y == 1], [0] * len(x[y == 1]))
plt.show()

def gaussian(x, l):
# 此处直接将超参数 γ 设定为 1.0;

# 此处 x 表示一维的样本,也就是一个具体的值,l 相应的也是一个具体的数,

        因为 l 和 x 一样,从特征空间中选定;

gamma = 1.0
# 此处因为 x 和 l 都只是一个数,不需要再计算模,可以直接平方;
return np.exp(-gamma * (x - l) ** 2)


# 设定地标 l1、l2 为 -1和1
l1, l2 = -1, 1
x_new = np.empty((len(x), 2))

for i, data in enumerate(x):
x_new[i, 0] = gaussian(data, l1)
x_new[i, 1] = gaussian(data, l2)

plt.scatter(x_new[y == 0, 0], x_new[y == 0, 1])
plt.scatter(x_new[y == 1, 0], x_new[y == 1, 1])
plt.show()

往期精选

机器学习|支持向量机SVM(一)

机器学习|支持向量机SVM(二)

机器学习|支持向量机SVM(三)

机器学习-线性回归(一)

机器学习-线性回归(二)

机器学习|梯度下降法

机器学习|逻辑回归


长按识别二维码关注我

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值