在 Hive 中,
SORT BY
和
ORDER BY
都用于对查询结果进行排序,但它们在实现方式和适用场景上有一些区别。
作用范围 | 有序性 | 数据量 | |
---|---|---|---|
SORT BY | 分区内排序 | 分区有序 | 适合处理大数据量 |
ORDER BY | 全局排序整个查询结果 | 全局有序 | 适合处理较小数据量 |
1 数据量
-
SORT BY:
SORT BY
用于在 Hive 中对查询结果进行排序,它的主要特点是在进行排序操作时会生成多个临时文件,每个文件都会存储部分排序后的数据。这可以减少内存的使用,适合处理大数据量的排序。示例:
SELECT * FROM employees SORT BY salary DESC;
-
ORDER BY:
ORDER BY
也用于对查询结果进行排序,但它会将所有结果加载到内存中进行排序,然后输出。这意味着对于大数据量的排序可能会导致内存溢出的问题,因此适合处理较小数据量的排序。示例:
SELECT * FROM employees ORDER BY hire_date;
总结:
- 如果需要对大数据量进行排序,应该使用
SORT BY
,因为它在排序过程中生成多个临时文件,减少内存压力。 - 如果数据量较小,可以使用
ORDER BY
,但要注意不要对过大的数据集进行排序,以免导致内存问题。
无论是使用 SORT BY
还是 ORDER BY
,都可以实现对查询结果的排序,选择哪种方式取决于数据量和内存等因素。
2 作用范围
-
SORT BY:
SORT BY
用于将查询结果的每个Reducer的输出分区内进行排序。每个Reducer的输出都会单独进行排序,而不会全局排序整个结果集。- 这意味着
SORT BY
在每个Reducer的输出分区内都进行了排序,但不保证全局有序。 SORT BY
在分布式计算中更高效,因为不需要全局数据重排。
-
ORDER BY:
ORDER BY
用于全局排序整个查询结果。它将整个结果集都收集到单个节点,然后对整个数据集进行排序。- 这意味着
ORDER BY
保证了全局有序,但在大数据量情况下可能会导致性能问题,因为需要将所有数据传输到一个节点上进行排序。
这篇文章通过实验介绍了排序作用范围:http://t.csdn.cn/MKNfJ
总结来说:
SORT BY
局部排序,适用于需要对每个Reducer输出进行排序的情况,分布式效率高。ORDER BY
全局排序,适用于需要整个结果集有序的情况,但可能在性能方面有一些挑战。
在实际使用中,根据查询需求和数据量大小,选择适合的排序方式。
3 调优思路
3.1 sort by 代替 order by
HiveQL中的 order by
与其他SQL方言中的功能一样,就是将结果按某字段全局排序,这会导致所有map端数据都进入一个reducer中,在数据量大时可能会长时间计算不完。
如果使用 sort by
,那么还是会视情况启动多个 reducer 进行排序,并且保证每个 reducer 内局部有序。为了控制 map 端数据分配到 reducer 的 key,往往还要配合distribute by
一同使用。如果不加distribute by
的话,map端数据就会随机分配到 reducer。
DISTRIBUTE BY
并不保证数据的全局排序,只是确保了在不同的 Reducer 任务之间数据的均衡分布。如果需要全局排序,应该结合使用 DISTRIBUTE BY
和 SORT BY
。
示例
假设我们有一个 user
表,包含用户信息,和一个 transaction
表,包含用户的交易记录。我们想要从这两个表中获取每个用户的总交易金额,并按照用户ID排序,同时确保数据在Reducer中均衡分布。
下面是一个示例:
-- 创建用户表
CREATE TABLE user (
user_id BIGINT PRIMARY KEY,
name STRING
);
-- 创建交易记录表
CREATE TABLE transaction (
user_id BIGINT,
amount DECIMAL(10, 2)
);
-- 插入示例数据
INSERT INTO user VALUES (1, 'Alice');
INSERT INTO user VALUES (2, 'Bob');
INSERT INTO user VALUES (3, 'Charlie');
INSERT INTO transaction VALUES (1, 100.50);
INSERT INTO transaction VALUES (2, 150.75);
INSERT INTO transaction VALUES (3, 75.20);
INSERT INTO transaction VALUES (1, 200.00);
INSERT INTO transaction VALUES (2, 50.30);
INSERT INTO transaction VALUES (3, 125.60);
-- 查询每个用户的总交易金额,并按照用户ID排序
INSERT OVERWRITE TABLE user_transaction_summary
SELECT u.user_id, u.name, SUM(t.amount) AS total_amount
FROM user u
JOIN transaction t ON u.user_id = t.user_id
GROUP BY u.user_id, u.name
SORT BY u.user_id;
在上述示例中,我们使用了 JOIN
将 user
表和 transaction
表关联起来,然后使用 GROUP BY
汇总每个用户的总交易金额。为了确保数据在Reducer中均衡分布,我们使用了 SORT BY
和 DISTRIBUTE BY
。在 INSERT OVERWRITE
语句中,我们使用 DISTRIBUTE BY u.user_id SORT BY u.user_id
,这将确保按照用户ID进行数据分发和排序。
这样,我们就能够得到每个用户的总交易金额,并且数据会按照用户ID排序,同时在不同的Reducer任务中进行均衡分布。
3.2 如何用 group by 方式同时统计多个列
select t.a, sum(t.b), count(t.c), count(t.d) from some_table t group by t.a;
这是解决方法:
select t.a, sum(t.b), count(t.c), count(t.d) from (
select a,b,null c,null d from some_table
union all
select a,0 b,c,null d from some_table group by a,c
union all
select a,0 b,null c,d from some_table group by a,d
) t;