数据结构——ST表

倍增

原理:

只递推状态空间在2的整数次幂位置上的值作为代表。当需要其他位置的值时,我们通过“任意整数可以表示成若干个2的次幂项的和”这一性质,使用之前求出的代表值拼出所需要的值。

要求:

状态空间关于2的次幂具有可划分性

一个例子:快速幂(体现倍增与二进制划分思想)

复制代码

 1 int power(int a,int b,int p)
 2 {
 3     int ans=1;
 4     while(b)
 5     {
 6         if(b & 1)ans=ans*a%p;//取出最后一位,判断b是否为奇数
 7         a=a*a%p;//每一位按二进制更新权值
 8         b>>=1;//舍弃最后一位
 9     }
10     return ans;
11 }

复制代码

快速幂忘了,多花了十分钟重新学。。。我太弱了QAQ

P.S.位运算什么的自己去看看就好了,很有用的。

倍增实现ST算法(划重点)

先提一下,ST算法主要是用来解决区间最值问题的(RMQ)

RMQ:给定一个长度为N的数列A,求下标为闭区间[l,r]中Ai的最值。

ST算法复杂度:O(nlogn) 预处理,O(1)在线回答

实现:

设Fi,j表示子区间[i,i+2j-1]里的最大值,也就是从i开始的2j个数的最大值。边界F[i,0]=A[i]。

当询问任意区间[l,r]的最值时,先计算出区间长度,满足2k<r-l+1的前提下最大的k。

那么  从l开始的2k个数 与  以r结尾的2k个数  两端一定覆盖了l,r。

 

 

code:

int log[N];//log[i]表示log2 d向下取整
log[0]=-1;//边界条件,使log[1]=0;
void ST_prework()
{
    for(int i=1;i<=n;i++)
        f[i][0]=a[i],log[i]=log[i>>1]+1;//预处理边界,log值
     for(int j=1;j<log[N];j++)   //共能划分出log 2 N个区间
        for(int i=1;i+(1<<j)-1<=n;i++)  //当前区间要小于总区间长度
            f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
int ST_query(int l,int r)
{
    int k=log[r-l+1];                  //求k
    return max(f[l][k],f[r-(1<<k)+1][k]);       //两段取最大值
}

总的来说,ST表在RMQ问题上,不管是时间还是空间都表现得非常优秀。但是一遇到修改,ST表就不好维护了。

这时我们就要用到更加复杂高级的数据结构——线段树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值