TensorFlow2.0教程-过拟合和欠拟合

这篇TensorFlow2.0教程深入探讨了过拟合和欠拟合问题,通过创建不同规模的模型、应用L2正则化和dropout策略,阐述如何在深度学习中找到模型复杂度的平衡点,以提高泛化能力。
摘要由CSDN通过智能技术生成

TensorFlow2.0教程-过拟合和欠拟合

Tensorflow 2.0 教程持续更新: https://blog.csdn.net/qq_31456593/article/details/88606284

TensorFlow 2.0 教程- Keras 快速入门
TensorFlow 2.0 教程-keras 函数api
TensorFlow 2.0 教程-使用keras训练模型
TensorFlow 2.0 教程-用keras构建自己的网络层
TensorFlow 2.0 教程-keras模型保存和序列化
TensorFlow 2.0 教程-eager模式
TensorFlow 2.0 教程-Variables
TensorFlow 2.0 教程–AutoGraph

TensorFlow 2.0 深度学习实践

TensorFlow2.0 教程-图像分类
TensorFlow2.0 教程-文本分类
TensorFlow2.0 教程-过拟合和欠拟合

完整tensorflow2.0教程代码请看tensorflow2.0:中文教程tensorflow2_tutorials_chinese(欢迎star)

1.观察数据

NUM_WORDS = 10000
(train_data, train_labels), (test_data, test_labels) = keras.datasets.imdb.load_data(num_words=NUM_WORDS)

def multi_hot_sequences(sequences, dimension):
    results = np.zeros((len(sequences), dimension))
    for i, word_indices in enumerate(sequences):
        results[i, word_indices] = 1.0
    return results

train_data = multi_hot_sequences(train_data, dimension=NUM_WORDS)
test_data = multi_hot_sequences(test_data, dimension=NUM_WORDS)
plt.plot(train_data[0])

png

防止过度拟合的最简单方法是减小模型的大小,即模型中可学习参数的数量。

深度学习模型往往善于适应训练数据,但真正的挑战是概括,而不是适合。

另一方面,如果网络具有有限的记忆资源,则将不能容易地学习映射。为了最大限度地减少损失,它必须学习具有更强预测能力的压缩表示。同时,如果您使模型太小,则难以适应训练数据。 “太多容量”和“容量不足”之间存在平衡。

要找到合适的模型大小,最好从相对较少的图层和参数开始,然后开始增加图层的大小或添加新图层,直到看到验证损失的收益递减为止。

我们将在电影评论分类网络上使用Dense图层作为基线创建一个简单模型,然后创建更小和更大的版本,并进行比较。

2.创建一个baseline模型

import tensorflow.keras.layers as layers
baseline_model = keras.Sequential(
[
    layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)),
    layers.Dense(16, activation='relu'),
    layers.Dense(1, activation='sigmoid')
]
)
baseline_model.compile(optimizer='adam',
                      loss='binary_crossentropy',
                      metrics=['accuracy', 'binary_crossentropy'])
baseline_model.summary()
Model: "sequential_5"
________________________________________________________________
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值