【西瓜书】第六章支持向量机---学习笔记

1.间隔与支持向量

1.1算法原理:

对于线性可分数据集,从几何角度,支持向量机就是找距离正负样本都最远的超平面,相比于感知机,其解是唯一的,泛化性能更好。

1.2点 x x x到超平面的距离

r = ∣ w T x + b ∣ ∣ ∣ w ∣ ∣ r = \frac{|w^Tx + b|}{||w||} r=wwTx+b,
假设超平面 ( w , b ) (w,b) (w,b)能将训练样本正确分类,即对于 ( x i , y i ) ∈ D (x_i,y_i)\in D (xi,yi)D,则若 y i = + 1 y_i = +1 yi=+1,有 w T x i + b > 0 w^Tx_i + b >0 wTxi+b>0;则若 y i = − 1 y_i = -1 yi=1,有 w T x i + b < 0 w^Tx_i + b <0 wTxi+b<0;
两个异类支持向量到超平面的距离之和为:
r = 2 ∣ ∣ w ∣ ∣ r = \frac{2}{||w||} r=w2
在这里插入图片描述
为了最大化间隔,仅需要最大化 ∣ ∣ w ∣ ∣ − 1 ||w||^{-1} w1于是支持向量机的基本型为:
在这里插入图片描述

2.对偶问题

最大间隔划分超平面的模型:
f ( x ) = w T x + b f(x) = w^T x + b f(x)=wTx+b,其中 w 和 b w和b wb是模型参数,对每条约束添加拉格朗日乘子 α i ≥ 0 \alpha_i \ge0 αi0该问题的拉格朗日函数可写为:
L ( w , b , α ) = 1 2 ∣ ∣ w ∣ ∣ 2 + ∑ i = 1 n α i ( 1 − y i ( w T x i + b ) ) L(w,b,\alpha) = \frac{1}{2}||w||^2 + \sum\limits_{i=1}^n\alpha_i(1 - y_i(w^Tx_i + b)) L(w,b,α)=21w2+i=1nαi(1yi(wTxi+b))
其中 α = ( α 1 ; α 2 ; . . . ; α m ; ) \alpha = (\alpha_1;\alpha_2;...;\alpha_m;) α=(α1;α2;...;αm;).令 L ( w , b , α ) L(w,b,\alpha) L(w,b,α) w w w b b b的偏导为零可得:
w = ∑ i = 1 m α i y i x i w = \sum\limits_{i=1}^m\alpha_iy_ix_i w=i=1mαiyixi
消去 w 和 b w和b wb,再考虑约束就可以得到对偶问题
m a x α ∑ i = 1 m α i − 1 2 ∑ i = 1 m ∑ j = 1 m α i α j y i y j x i T x j max_{\alpha} \sum\limits_{i=1}^m\alpha_i - \frac{1}{2}\sum\limits_{i=1}^m\sum\limits_{j=1}^m\alpha_i\alpha_jy_iy_jx_i^Tx_j maxαi=1mαi21i=1mj=1mαiαjyiyjxiTxj
在这里插入图片描述
在这里插入图片描述

3.核函数

现实中,"异或"问题不线性可分,如下图
在这里插入图片描述
解决方法:将样本从原始空间映射到 一个更高维的特征空间,使得
样本在这个特征空间内线性可分.
ϕ ( x ) \phi(x) ϕ(x)表示将 x x x映射后的特征向量,于是,在特征空间中划分超平面所对应的模型可表示为
f ( x ) = w T ϕ ( x ) + b f(x) = w^T\phi(x) + b f(x)=wTϕ(x)+b
在这里插入图片描述
其对偶问题是:
在这里插入图片描述
在这里插入图片描述
求解后可得到
在这里插入图片描述
在这里插入图片描述
只要一个对称函数所对应的核矩阵半正定,它就能作为核
函数使用
在这里插入图片描述此外,还可通过函数组合得到

4.软间隔与正则化

抛出问题:在现实任务中,往往很难确定合适的核函数使得训练样本在特征空间中线性可分.
解决办法:允许支持向量机在一些样本上出错,为此称为"软间隔"
在这里插入图片描述
m i n w , b 1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 m ℓ 0 / 1 ( y i ( w T x i + b ) − 1 ) min_{w,b} \frac{1}{2}||w||^2 + C\sum\limits_{i=1}^m\ell_{0/1}(y_i(w^Tx_i +b) -1) minw,b21w2+Ci=1m0/1(yi(wTxi+b)1)
其中C>0是一个常数, ℓ 0 / 1 是 损 失 函 数 \ell_{0/1}是损失函数 0/1

ℓ 0 / 1 ( z ) = { 1 x < 0 0 x ≥ 0 \ell_{0/1}(z)=\begin{cases}1&x<0\\0&x\ge0\end{cases} 0/1(z)={10x<0x0
显然,当C为无穷大时,迫使是所有样本满足约束;C取有限值时,允许一些样本不满足约束.
在这里插入图片描述
常用的软间隔支持向量机
在这里插入图片描述

5.支持向量回归

支持向量回归假设 f ( x ) f(x) f(x)与真实输出y之间最多有 ϵ \epsilon ϵ的偏差.
在这里插入图片描述
SVR的问题可形式化:
在这里插入图片描述

在这里插入图片描述
SVR可以表示为
在这里插入图片描述

6.核方法

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值