同余问题(含证明)整理(篇目①:定义、性质与两个简单定理)

本文详细介绍了模m同余的概念,包括定义、定理及其证明。主要内容涵盖模m同余的定义,如a≡b(modm),以及与之相关的性质,如自反性、对称性、传递性、同加性、同乘性和同幂性。此外,文章还讨论了模m同余在不同情况下的应用,例如在模p和模q互质时的性质。
摘要由CSDN通过智能技术生成


文中部分字母含义、定义(不想累赘书写)

a = k 1 m + r 1 , b = k 2 m + r 2 a=k_1m+r_1,b=k_2m+r_2 a=k1m+r1,b=k2m+r2 r r r为余数)


定义&定理

定义①:

a ≡ b ( m o d m ) a\equiv b(mod\quad m) ab(modm) a a a b b b对模m同余,即 a m o d m = b m o d m a\quad mod\quad m=b\quad mod\quad m amodm=bmodm

 
定义②:
在模 m m m的意义下,余数相同的归为一个集合,那么所有整数被分为 m m m个不同的集合,模 m m m的余数分别为 0 , 1 , 2 , 3 , . . . , m − 1 0,1,2,3,...,m − 1 0,1,2,3,...,m1,这些集合被称为模 m m m剩余类(同余类)。

 

定理①

a ≡ b ( m o d m ) ⇔ m ∣ ( a − b ) a≡b(mod\quad m)\Leftrightarrow m|(a-b) ab(modm)m(ab)
证:
∴ a − b = k 1 m + r 1 − ( k 2 m + r 2 ) = ( k 1 − k 2 ) m + ( r 1 − r 2 ) \therefore a-b=k_1m+r_1-(k_2m+r2)=(k_1-k_2)m+(r_1-r_2) ab=k1m+r1(k2m+r2)=(k1k2)m+(r1r2)
∵ m ∣ ( a − b ) \because m|(a-b) m(ab)
∴ r 1 = r 2 \therefore r_1=r_2 r1=r2(即与 r r r余数无关时,则 a − b = ( k 1 − k 2 ) m a-b=(k_1-k_2)m ab=(k1k2)m必能被 m m m整除
r 1 = r 2 r_1=r_2 r1=r2时,即 a ≡ b ( m o

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值