打怪升级

题意:

对于多数RPG游戏来说,除了剧情就是打怪升级。本题的任务是用最短的时间取得所有战斗的胜利。这些战斗必须按照特定的顺序进行,每打赢一场,都可能会获得一些补药,用来提升力量。本题只有两种补药:“加1药”和“乘2药”,分别让你的力量值加1和乘以2。 
  战斗时间取决于你的力量。每场战斗可以用6个参数描述:p1, p2, t1, t2, w1, w2。如果你的力量小于p1,你将输掉战斗;如果你的力量大于p2,需要t2秒赢得战斗;如果力量位于p1和p2(包括p1和p2),战斗时间从t1线性递减到t2。比如p1=50,p2=75,t1=40,t2=15,你的力量为55,则战斗获胜需要35秒。注意,战斗时间可能不是整数。最后两个参数w1和w2分别表示战斗胜利后获得的“加1药”和“乘2药”的数量。注意,你不一定要立刻使用这些补药,可以在需要的时候再用,但不能在战斗中使用补药。 
  按顺序给出每场战斗的参数,输出赢得所有战斗所需的最短总时间。战斗必须按顺序进行,且不能跳过任何一场战斗。 
Input
输入最多包含25组测试数据。每组数据第一行为两个整数n和p(1<=n<=1000, 1<=p<=100),即战斗的场数和你的初始力量值。以下n行每行6个整数p1, p2, t1, t2, w1, w2(1<=p1<p2<=100, 1<=t2<t1<=100, 0<=w1,w2<=10),按顺序给出各场战斗的参数。输入结束标志为n=p=0。 
Output
对于每组数据,输出最短总时间(单位:秒),保留两位小数。如果无解,输出“Impossible”(不含引号)。


没想到这道题可以用dfs过,本以为会超时,然而加上剪枝可以过,

if(time>stime)

        return;


这个剪枝很巧妙

注意精力大于p2的时候直接赋值时间


#include <iostream>

#include<cstdio>

#include<algorithm>

#include <cmath>

#define imax 1000000005

using namespace std;

int n;

double stime;

struct node

{

    int p1,p2,t1,t2,w1,w2;

}a[10005];

int cheng(int s)

{

    int sum=1;

    if(s==0)

        return 1;

    for(int i=0;i<s;i++)

        sum=sum*2;

    return sum;

}

void dfs(int i,int eng,double time,int sum)

{

    if(time>stime)

        return;

    eng=eng+a[i].w1;

    int j=0;

    if(eng<a[i].p1)

    {

        for(j=1;j<=a[i].w2+sum;j++)

        {

            eng=eng*2;

            if(eng>=a[i].p1)

                break;

        }

        if(eng<a[i].p1)

        {

            return;

        }

        

    }

    sum=sum+a[i].w2-j;

    double ttime;

    if(i==n-1)

    {

        eng*=cheng(sum);

        if(eng>=a[i].p2)

            ttime=a[i].t2;

        else

            ttime=(a[i].t1-a[i].t2)*(eng-a[i].p1)/(1.0*(a[i].p1-a[i].p2))+a[i].t1;

        //cout<<time<<endl;

        if(time+ttime<stime)

            stime=time+ttime;

        return;

    }

    if(eng>=a[i].p2)

        dfs(i+1,eng,time+a[i].t2,sum);

    else

    {

        int teng=eng;

        for(int j=0;j<=sum;j++)

        {

            if(teng>=a[i].p2)

            {

                dfs(i+1,teng,time+a[i].t2,sum-j);

                break;

            }

            ttime=(a[i].t1-a[i].t2)*(teng-a[i].p1)/(1.0*(a[i].p1-a[i].p2))+a[i].t1;

            dfs(i+1,teng,ttime+time,sum-j);

            teng=teng*2;

        }

    }

    

}

int main()

{

    int enge;

    while(scanf("%d %d",&n,&enge)&&n!=0)

    {

        for(int i=0;i<n;i++)

            scanf("%d %d %d %d %d %d",&a[i].p1,&a[i].p2,&a[i].t1,&a[i].t2,&a[i+1].w1,&a[i+1].w2);

        a[0].w1=0;

        a[0].w2=0;

        stime=imax;

        dfs(0,enge,0,0);

        if(stime==imax)

            printf("Impossible\n");

        else

            printf("%.2lf\n",stime);

    }

    return 0;

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值