乘法逆元

如果 a*x ≡ 1 (mod p),且gcd(a,p)=1 ,则称a关于模p的乘法逆元为x。

求法:扩展欧几里得

由         a*x ≡ 1 (mod p)

<==>(a*x - 1)%p == 0

<==>a*x - 1 == p*y

<==>a*x -p*y == 1

可得     <==>a*x+py == 1 (前提gcd(a,b) == 1)

正整数 x =  ( (x % p) +p) %p

求得的正整数x 即为a关于模p的乘法逆元

应用:

对于(a+b)%p 和 (a-b)%p , 有

(a+b)%p=(a%p+b%p)%p

(a*b)%p=(a%p)*(b%p)%p 

而(a/b)%p,没有相应的公式,数会变得很大

可以通过乘法逆元来求:

(a/b)%p = a * inv(b,p)%p

 

 

组合

 FZU - 2020 

给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数。例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是xiaobo希望你输出 C(n,m) mod p的值!

Input

输入数据第一行是一个正整数T,表示数据组数 (T <= 100) 接下来是T组数据,每组数据有3个正整数 n, m, p (1 <= m <= n <= 10^9, m <= 10^4, m < p < 10^9, p是素数)

Output

对于每组数据,输出一个正整数,表示C(n,m) mod p的结果。

Sample Input

2
5 2 3
5 2 61

Sample Output

1
10

组合数递推公式   c (n,m) = c(n,m-1) * (n-m+1) / m;

直接算数太大存不下

用乘法逆元    c(n,m) = c(n,m-1) * (n-m+1) * inv(m,p) % p  ;

 

#include<stdio.h>

long long ex_gcd(long long a,long long b,long long &x, long long &y)
{
    if(b==0)
    {
        long long g=a;
        x=1;
        y=0;
        return g;
    }
    else
    {
        long long g =ex_gcd(b,a%b,x,y);
        long long x1=y,y1=x-a/b*y;
        x=x1,y=y1;
        return g;
    }
}

long long inv(long long m, long long p)
{
    long long x, y;
    ex_gcd(m,p,x,y);
    return ((x%p)+p)%p;
}

long long c(long long n, long long  m, long long p)
{
    if(m > n-m)
        m = n-m;
    long long ans = 1;
    for(long long i = 1; i <= m; i ++)
    {
        ans = ans*(n-i+1)%p*inv(i,p)%p;
    }
    return ans;

}
int main()
{
    long long m,p,n,t;
    scanf("%lld",&t);
    while(t --)
    {
        scanf("%lld %lld %lld",&n, &m, &p);
        printf("%lld\n",c(n,m,p));
    }
    return 0;
}

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值