20
2019 CVPR
Attention Based Glaucoma Detection: A Large-scale Database and CNN Model
Method : 分类
Dataset :LAG 5824 fundus (2392 G,3432 N)、 RIM-ONE
Architecture : AG-CNN | attention
Results :LAG AC 95.3% SE 95.4% SP 95.2% AUC 0.975
RIM-ONE AC 85.2% SE 84.8% SP 85.5% AUC 0.916
Methods
医学图像识别中存在冗余
注意力机制
注意机制的基本思想是定位深度神经网络(DNNs)中特征最显著的部分,从而消除视觉任务中的冗余。
- 自我学习的方式生成,其他信息比如标签对注意图的监督较弱
- 利用人类的注意力信息来引导DNNs聚焦于感兴趣区域(ROI)。
目前还没有将人的注意力融入医学图像识别的研究。主要是因为缺乏医生注意数据库,这需要合格的医生和在诊断中获取医生注意的特殊技术。
因此,本文首先收集了一个大规模的基于注意力的眼底图像数据库用于青光眼检测(LAG),包括5824张