【医学+深度论文:F20】2019 CVPR Attention Based Glaucoma Detection: A Large-scale Database and CNN Model

该研究介绍了2019年CVPR上的一项工作,提出了一种基于注意力的青光眼检测方法。研究构建了一个包含5824张眼底图像的大型数据库LAG,并使用注意力机制的AG-CNN模型,提高了青光眼检测的准确性和鲁棒性。在LAG和RIM-ONE数据集上,模型表现出良好的性能。
摘要由CSDN通过智能技术生成

20

2019 CVPR
Attention Based Glaucoma Detection: A Large-scale Database and CNN Model

Method : 分类
Dataset :LAG 5824 fundus (2392 G,3432 N)、 RIM-ONE
Architecture : AG-CNN | attention
Results :LAG AC 95.3% SE 95.4% SP 95.2% AUC 0.975
     RIM-ONE AC 85.2% SE 84.8% SP 85.5% AUC 0.916

Methods

医学图像识别中存在冗余

注意力机制

注意机制的基本思想是定位深度神经网络(DNNs)中特征最显著的部分,从而消除视觉任务中的冗余。

  • 自我学习的方式生成,其他信息比如标签对注意图的监督较弱
  • 利用人类的注意力信息来引导DNNs聚焦于感兴趣区域(ROI)。

目前还没有将人的注意力融入医学图像识别的研究。主要是因为缺乏医生注意数据库,这需要合格的医生和在诊断中获取医生注意的特殊技术。
因此,本文首先收集了一个大规模的基于注意力的眼底图像数据库用于青光眼检测(LAG),包括5824张

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值