01迷宫(洛谷P1141)

【题目描述】

有一个仅由数字0与1组成的n*n格迷宫。若你位于一格0上,那么你可以移动到相邻4格中的某一格1上,同样若你位于一格1上,那么你可以移动到相邻4格中的某一格0上。

你的任务是:对于给定的迷宫,询问从某一格开始能移动到多少个格子(包含自身)。

【数据范围】

n<=1000

m<=100000

【分析】

显然互相可以到达的格子的答案是一样的。这样的一条路径上所有点的答案都是路径的长度。所以求联通块即可。具体的实现用DFS和BFS都可以。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
#define LL long long
int dx[]={0,0,-1,1};
int dy[]={1,-1,0,0};
const int N=1000+5;
const int M=100000+5;
char ch[N][N];
int n,m;
int a[N][N],vis[N][N]={0},sum[N][N]={0};
struct haha{
	int x,y;
}node[M];
queue<haha> Q;
vector<haha> Ans;
void bfs(int X,int Y){
	haha tmp;
	tmp.x=X,tmp.y=Y;
	Q.push(tmp);
	Ans.push_back(tmp);
	while (!Q.empty()){
		haha t=Q.front();
		Q.pop();
		for (int i=0;i<4;i++){
			int tx=t.x+dx[i],ty=t.y+dy[i];
			if (tx>=1 && tx<=n && ty>=1 && ty<=n && a[tx][ty]!=a[t.x][t.y] && !vis[tx][ty]){
				haha T=t;
				T.x+=dx[i],T.y+=dy[i];
				Ans.push_back(T);
				Q.push(T);
				vis[tx][ty]=1;
			}
		}
	}
}
int main(){
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++) scanf("%s",ch[i]+1);
	for (int i=1;i<=n;i++)
	  for (int j=1;j<=n;j++)
	    a[i][j]=ch[i][j]=='0'?0:1;
	for (int i=1;i<=n;i++)
	  for (int j=1;j<=n;j++)
	    if (!vis[i][j]){
	      Q.empty();
	    	Ans.clear();
	    	vis[i][j]=1;
			  bfs(i,j);
			  for (vector<haha>::iterator it=Ans.begin();it!=Ans.end();it++) sum[(*it).x][(*it).y]=Ans.size()-1;
			}
	for (int i=1;i<=m;i++){
		int u,v;
		scanf("%d%d",&u,&v);
		printf("%d\n",sum[u][v]+1);
	}
}

 

洛谷p1238是一个题目,具体要求是给定一个迷宫,求从起点到终点的最短路径。这个问题可以使用链表来表示迷宫,并使用广度优先搜索算法来求解最短路径。 以下是一个示例代码,演示了如何使用链表和广度优先搜索算法来解决洛谷p1238题目中的迷宫问题: ```python from collections import deque # 定义迷宫的链表节点类 class Node: def __init__(self, x, y, val): self.x = x self.y = y self.val = val self.next = None # 构建迷宫的链表 def build_maze(maze): m = len(maze) n = len(maze[0]) head = Node(0, 0, maze[0][0]) curr = head for i in range(m): for j in range(n): if i == 0 and j == 0: continue node = Node(i, j, maze[i][j]) curr.next = node curr = node return head # 广度优先搜索算法求解最短路径 def bfs(maze): m = len(maze) n = len(maze[0]) visited = [[False] * n for _ in range(m)] queue = deque([(0, 0, 0)]) # (x, y, step) visited[0][0] = True while queue: x, y, step = queue.popleft() if x == m - 1 and y == n - 1: return step for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]: nx, ny = x + dx, y + dy if 0 <= nx < m and 0 <= ny < n and not visited[nx][ny] and maze[nx][ny] == 0: queue.append((nx, ny, step + 1)) visited[nx][ny] = True return -1 # 示例迷宫 maze = [ [0, 1, 0, 0, 0], [0, 1, 0, 1, 0], [0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 0, 0, 1, 0] ] # 构建迷宫的链表 maze_head = build_maze(maze) # 使用广度优先搜索算法求解最短路径 shortest_path = bfs(maze) print("最短路径长度为:", shortest_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值