连接: http://codeforces.com/gym/100947/problem/E
题目大意:给一个 n *m 的矩阵 问从左上角,走到右下角有多少条路径,
在这个矩阵中,有一个点Q(x,y)是陷阱,意味着,路径不能经过这个点。
方案数= 总的方案数 减去 经过陷阱的路径的方案数;
总的方案数 C(n+m-2,n-1) ….意思就是从左上到右下,你需要经过走n-m-2 步,选择任意其中的 n-1步往下走就可以啦。
经过陷阱的路径的方案数 C(x+y-2,x-1)*C(n-x+m-y,n-x);
#include<stdio.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxnode=2*1e5+10;
const ll mod=1e9+7;
// C(n,m) = n!/(m!*(n-m)!)
// N , M ( 2≤N,M≤1e5)
// 预处理出 N!阶层 保存到数组f[]里;
ll f[maxnode];
void init()
{
f[0]=1;f[1]=1;
for(ll i=2;i<=maxnode;i++)
{
f[i]=f[i-1]*i%mod;
}
}
// 快速幂 求逆元用 即是 阶层的倒数
ll mod_pow(ll x,ll n,ll mod)
{
ll res=1;
while(n>0)
{ //printf("here %I64d\n",n);
if(n&1)
{
res=res*x%mod;
}
x=x*x%mod;
n>>=1;
}
// printf("%res %I64d\n",res);
return res;
}
ll C(int n,int m)
{
ll val=1;
val*= f[n];
// printf("fir %I64d\n",val);
val*= mod_pow(f[m],mod-2,mod); // 此处运用了费马小定理
val%=mod; //注意 这里需 取模,不然等下就溢出啦。。。找错误找了n久,不应该啊。。
val*= mod_pow(f[n-m],mod-2,mod); // 当mod 是素数的情况下, 一个数的逆元 a^(-1)=a^(mod-2) %(mod);
// printf("val %I64d\n",val%mod);
return val%mod;
}
int main()
{
//freopen("F:\\123.txt","r",stdin);
int t,m,n,qx,qy;
scanf("%d",&t);
init();
for(int ik=1;ik<=t;ik++)
{
scanf("%d%d",&n,&m);
scanf("%d%d",&qx,&qy);
ll res=(C(m+n-2,n-1)-C(qx+qy-2,qx-1)*C(m-qy+n-qx,n-qx)%mod+mod)%mod;
printf("%I64d\n",res);
}
return 0;
}
上面的代码只预处理了阶层,阶层的逆元,要用到那个再算。。
下面的代码
另外附上 直接O(n) 预处理出所有的 逆元。。很强大。
转载自
http://www.bubuko.com/infodetail-1525966.html
ll fac[N], afac[N];
void pre() {
fac[0] = 1;
for(int i = 1; i < N; ++i) fac[i] = fac[i - 1] * (ll)i % MOD;
afac[N - 1] = powm(fac[N - 1], MOD - 2);
for(int i = N - 1; i >= 1; --i) afac[i - 1] = afac[i] * i % MOD;
}