Day131 面试记录(2)

这篇博客主要讨论了多线程的应用场景,如优惠券派发,线程生命周期,线程间的通讯机制,如wait/sleep的差异,以及进程与线程的区别。同时涉及到了SpringCloud的熔断机制,如服务熔断和线路隔离。还涵盖了Java内存模型,线程池,JVM,数据库,网络协议,以及一些基础概念如字符串的final特性,Shiro权限控制等。
摘要由CSDN通过智能技术生成
  • 多线程的应用场景:多线程派发优惠券,多线程拿京东商品(这一块内容比较多,慢慢总结吧)
  • 线程的生命周期:或叫做线程状态,新建(new),就绪(start),运行(拿到CPU资源),阻塞(sleep/wait),死亡(执行结束,stop)
  • sleep和wait
    • 来自不同的类:wait是Object类的;sleep来自Thread类
    • 关于锁的释放:wait会释放锁,sleep不释放锁
    • 使用的范围不同:wait必须在同步代码块汇总,sleep没有限制
  • 线程间的通讯机制:生产者与消费者问题,synchronized+wait+notify 实现线程通讯,也可以用JUC中的 Lock+await+signal来实现
  • 进程和线程:分别是什么,关系,为什么要有线程
  • hashmap:略
  • concurrenthashmap:略
  • 常用的锁有哪些:syn和lock
  • 数据量特别大hashmap存储不了:?
  • java的内存模型:略
  • git的垃圾回收机制:略
  • arraylist和linklist:略
  • arraylist扩容机制:略
  • spring用到那些设计模式:略
  • aop怎么实现动态代理的:略
  • 为什么要用springcloud:略
  • 熔断机制的实现原理
    • 线路隔离:Hystrix为每个依赖服务调用分配一个小的线程池,如果线程池已满调用将被立即拒绝,返回错误信息(默认不采用排队,加速失败判定时间),并且会进行降级处理,这样子用户请求故障时,不会导致阻塞,至少返回一个提示信息。
    • 服务熔断:分布式系统应用这一模式之后,服务调用方可以自己进行判断某些服务反应慢或者存在大量超时的情况,能够主动熔断,防止整个系统被拖垮。不同于电路熔断,Hystrix可以在情况好转子厚自动重连。  
  • 各层协议:应用层,表示层,会话层,传输层,网络层,数据链路层,
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值