【干货】分享几个免费下载音乐mp3的网站实测可用

简述

本文仅用于学习交流,不做任何声明。

分享几个免费下载音乐mp3的网站、免费音乐、

大家有找不到资源的,可以留言评论下,帮忙代下载~~

一说

文本由PUSDN强力驱动!

有账号的朋友,可以点个赞或者评论两句哦,评论后会获得积分奖励~

wandhi【实测可用】

评价:比较推荐,无需登录,歌曲较全,也是笔者经常用的网站

网址:http://music.wandhi.com/

e7b04045b2316646b7eb5b5232c45a82.jpeg

哈基米

https://www.dtshot.com/

1e78501b3b0bc95ec8d49d9ed5a9cd0a.jpeg

pixabay

听说很强大, 4万+音乐

https://pixabay.com/

淘声

https://www.tosound.com/

https://mixkit.co/

爱给

https://www.aigei.com/

c26d0358bed9089e8cf4720b388562fe.jpeg

其他

https://www.jamendo.com/start

哈密尔顿函数是经典力学中的一个非常重要的概念,它与变分法密切相关。 首先,我们来看哈密尔顿函数的定义。对于一个具有广义坐标$q_i$和广义动量$p_i$的系统,哈密尔顿函数$H(q,p)$定义为: $$H(q,p) = \sum_i p_i \dot{q}_i - L(q,\dot{q})$$ 其中,$L$是系统的拉格朗日函数。哈密尔顿函数是一个关于广义坐标和广义动量的函数。 接下来,我们来看哈密尔顿函数与变分法的联系。在经典力学中,哈密尔顿原理是指系统在某个时间段内的运动路径,使得作用量最小。作用量$S$是一个关于路径$q(t)$的函数,定义为: $$S[q(t)] = \int_{t_1}^{t_2} L(q,\dot{q})dt$$ 其中,$L$是系统的拉格朗日函数。 利用变分法可以得到哈密尔顿原理的欧拉-拉格朗日方程,即: $$\frac{\delta S}{\delta q} = \frac{d}{dt}\frac{\delta S}{\delta \dot{q}}$$ 将$L$表示为哈密尔顿函数的形式,即$L(q,\dot{q})=p\dot{q}-H(q,p)$,其中$p$是广义动量,代入作用量的表达式中,可以得到: $$S[q(t)] = \int_{t_1}^{t_2} [p\dot{q}-H(q,p)]dt$$ 接下来,我们对路径$q(t)$进行微小变化$\delta q(t)$,并保持端点不变。利用变分法,可以得到: $$\delta S = \int_{t_1}^{t_2} [\delta p\dot{q} + p\delta \dot{q} - \frac{\partial H}{\partial q}\delta q - \frac{\partial H}{\partial p}\delta p]dt + [p\delta q]_{t_1}^{t_2}$$ 根据变分法的要求,端点不变,即$[p\delta q]_{t_1}^{t_2}=0$。因此,我们可以得到哈密尔顿原理的欧拉-拉格朗日方程: $$\begin{cases}\frac{\partial H}{\partial p}=\dot{q}\\-\frac{\partial H}{\partial q}=\dot{p}\end{cases}$$ 这就是哈密尔顿函数与变分法的联系。使用哈密尔顿函数,可以将拉格朗日方程转化为哈密尔顿方程,从而更方便地研究系统的动力学性质。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JaneYork

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值