一.问题
1.绘制函数
f
(
x
)
=
(
20
∗
x
3
−
7
∗
x
2
+
5
∗
x
+
10
)
∗
(
4
x
2
+
12
∗
x
−
3
)
f(x) = (20*x^3 - 7 * x^2 +5*x+10)*(4x^2+12*x-3)
f(x)=(20∗x3−7∗x2+5∗x+10)∗(4x2+12∗x−3);及
f
′
(
x
)
f'(x)
f′(x)的图形
a = [20,-7,5,10];
b = [4,12,-3];
x = -2:0.01:1;
c = conv(a,b); %提取两个函数的乘积后的系数值
f = polyval(c,x);%求出函数f(x)
hold on;
plot(x,f,'b--');
xlabel('x');
ylabel('f(x)');
f1 = polyval(polyder(c),x);%polyder(c)表示提取函数f(x)求导后的系数
plot(x,f1,'r');
hold off;
legend('f(x)','f^\prime(x)');%显示f(x)和f‘(x)
结果:
2.求f(x)的积分,利用polyint(p,n)函数
如
f
(
x
)
=
5
∗
x
4
−
2
∗
x
2
+
1
f(x) = 5*x^4 -2*x^2+1
f(x)=5∗x4−2∗x2+1,求
∫
f
(
x
)
d
(
x
)
∫f(x)d(x)
∫f(x)d(x)
p=[5 0 -2 0 1];
a = polyint(p, 3);%polyint(p,n)表示提取函数积分后的系数值,n是常数项
polyval(a,7);%计算 ∫f(7)d(x)
3.利用diff()函数(计算向量内两元素的差值),使用导数定义求
f
′
(
x
)
f'(x)
f′(x),
定义:
f
′
(
x
)
=
lim
h
→
0
f
(
x
0
+
h
)
−
f
(
x
0
)
h
f'(x)=\lim_{h\rightarrow 0}\frac{f(x0+h)-f(x0)}{h}
f′(x)=limh→0hf(x0+h)−f(x0)
例:
f
(
x
)
=
s
i
n
(
x
)
,
求
f
′
(
x
0
)
,
其
中
x
0
=
π
/
2
,
h
=
0.1
f(x)=sin(x),求f'(x0),其中x0= π/2,h=0.1
f(x)=sin(x),求f′(x0),其中x0=π/2,h=0.1
x0 = pi/2; h = 0.1;
x = [x0,x0+h];
y = [sin(x0),sin(x0+h)];
m = diff(y)./diff(x)
结果:
m =
-0.0500
注:在线LaTex公式编辑器在CSDN博客上插入数学公式,http://private.codecogs.com/latex/eqneditor.php
二.问题
已知
f
(
x
)
=
e
−
x
∗
s
i
n
(
x
2
/
2
)
,
求
当
h
=
0.1
、
0.01
、
0.001
时
,
f
′
(
x
)
的
图
形
f(x)=e^{-x}*sin(x^{2}/2),求当h=0.1、0.01、0.001时,f'(x)的图形
f(x)=e−x∗sin(x2/2),求当h=0.1、0.01、0.001时,f′(x)的图形
for i = 1:4
h = power(10,-i);
x = 0:h:2*pi;
y = exp(-x).*sin(x.^2/2);
m = diff(y)./diff(x);
hold on;
%plot(x,y);
plot(x(1:end-1),m);%x(1:end-1)表示x(1)、x(2)...导函数比原函数少一个元素
hold off;
end;
结果:
怎么二次求导?
m = diff(y)./diff(x); %求f'(x)
m2 = diff(m)./diff(x(1:end-1)); %求f''(x)
三.求定积分的几个方法(求得是近似值)
①.中值规则
∫
x
0
x
3
f
(
x
)
d
x
≈
h
f
0
+
h
f
1
+
h
f
2
=
h
∑
i
=
0
n
−
1
f
i
\int_{x0}^{x3}f(x)dx≈hf0+hf1+hf2=h\sum_{i=0}^{n-1}fi
∫x0x3f(x)dx≈hf0+hf1+hf2=h∑i=0n−1fi
其中
f
0
=
f
(
x
0
+
x
1
2
)
f0=f(\frac{x0+x1}{2})
f0=f(2x0+x1)、
f
1
=
f
(
x
1
+
x
2
2
)
f1=f(\frac{x1+x2}{2})
f1=f(2x1+x2)、
f
2
=
f
(
x
2
+
x
3
2
)
f2=f(\frac{x2+x3}{2})
f2=f(2x2+x3)
例:求 A = ∫ 0 2 4 x 3 d x = ( 2 ) 4 − ( 0 ) 4 = 16 A=\int_{0}^{2}4x^3dx=(2)^4-(0)^4=16 A=∫024x3dx=(2)4−(0)4=16
h = 0.05;
x = 0:h:2;
midpoint = (x(1:end-1)+x(2:end))./2;
y = 4*midpoint.^3;
s = sum(h*y)
结果:
s =
15.9950
注解:
x(1:end-1)表示 x0,x1,x2…
x(2:end)表示 x1,x2,x3…
(x(1:end-1)+x(2:end))./2表示
(
x
0
+
x
1
2
)
、
(
x
1
+
x
2
2
)
、
(
x
2
+
x
3
2
)
.
.
.
(\frac{x0+x1}{2})、(\frac{x1+x2}{2})、(\frac{x2+x3}{2})...
(2x0+x1)、(2x1+x2)、(2x2+x3)...
midpoint 表示求
f
(
x
0
+
x
1
2
)
f(\frac{x0+x1}{2})
f(2x0+x1)
②.求梯形面积规则
∫
x
0
x
3
f
(
x
)
d
x
≈
h
(
f
0
+
f
1
2
+
f
1
+
f
2
2
+
f
2
+
f
3
2
)
\int_{x0}^{x3}f(x)dx≈h(\frac{f0+f1}{2}+\frac{f1+f2}{2}+\frac{f2+f3}{2})
∫x0x3f(x)dx≈h(2f0+f1+2f1+f2+2f2+f3)
例:求
A
=
∫
0
2
4
x
3
d
x
=
(
2
)
4
−
(
0
)
4
=
16
A=\int_{0}^{2}4x^3dx=(2)^4-(0)^4=16
A=∫024x3dx=(2)4−(0)4=16
h = 0.05;
x = 0:h:2;
y = 4*x.^3;
trapezoid = (y(1:end-1)+y(2:end))/2;
s = h*sum(trapezoid)
结果:
s =
16.0100
③.Simpson(辛普森) 法则
∫
x
0
x
3
f
(
x
)
d
x
≈
h
3
(
f
0
+
4
f
1
+
f
2
)
\int_{x0}^{x3}f(x)dx≈\frac{h}{3}(f0+4f1+f2)
∫x0x3f(x)dx≈3h(f0+4f1+f2)
例:求
A
=
∫
0
2
4
x
3
d
x
=
(
2
)
4
−
(
0
)
4
=
16
A=\int_{0}^{2}4x^3dx=(2)^4-(0)^4=16
A=∫024x3dx=(2)4−(0)4=16
h = 0.05;
x = 0:h:2;
y = 4*x.^3;
s = h/3*(y(1)+2*sum(y(3:2:end-2))+4*sum(y(2:2:end))+y(end))
结果:
s =
16
推广:
④integral()函数取定积分的准确值
求: ∫ 0 2 1 x 3 − 2 x − 5 d x \int_{0}^{2}\frac{1}{x^3-2x-5}dx ∫02x3−2x−51dx
y = @(x) 1./(x.^3-2*x-5);
integral(y,0,2)
结果:
ans =
-0.4605
注:integral(y,a,b)中,y表示原函数,a、b分别表示积分上下限;
integral2(y,a,b,c,d);二次积分;a、b分别表示内层积分上下限,c、d表示外层积分上下限;