大数a^b%c(快速幂运算)模板

其主要利用的原理就是
a^4 % c=(a^2)^2 % c;
那么这样去快速地算明显是指数级别的计算速度

#include<iostream>
using namespace std;
int main()
{
    int a,b,c;
    while (scanf("%d%d%d",&a,&b,&c)!=EOF&&a!=0&&b!=0&&c!=0)
    {
        int k=1;
        while (b>0)
        {
            if(b%2==1) k=(k*a)%c;// 作用:当 b为奇数,则先单独乘一个
            a=(a*a)%c;    
            b = (b>>1);  
            // a1=a%c                            1=2^0   
            // a2=((a%c)*(a%c))%c                2=2^1
            // a3=((a%c*a%c)%c*(a%c*a%c)%c)      4=2^2
            //由此,可知 b=b/2 ,每次的 a 的个数为上一次的 2倍 
            //k在最后b==1的时候会把前面所有的b为偶数项的时候积攒下来的数一次性乘进去
        }
        printf("%d\n",k);
    }
    return 0;
}

下面再给出简单形式的

int fastpow(int a,int b,int c){
        int res=1;
        while(b){
                if(b&1) res=(res*a)%c;
                a=(a*a)%c;
                b>>=1;
        }
        return res;
}

但是如果a,b都是很大的话就要用long long,这里有一个小技巧:
根据费马小定理

如果c是一个素数,那么a^b%c==a^( b%(c-1) )%c

利用快速幂的思想还可以实现快速乘,其实就是把a*a变成了a*2而已

ll multiply(ll a,ll b){
    ll res=0;
    while(b){
        if (b&1) res=(res+a)%MOD;
        a=(a*2)%MOD;
        b>>=1;
    }
    return res;
}
阅读更多

没有更多推荐了,返回首页