插入排序算法
时间复杂度:O(n^2)
思想:为当前数找到前面合适的插入位置
8 6 2 3 1 5 7 4 | 6比8小,交换 |
6 8 2 3 1 5 7 4 | 2比8小,交换 又比6小,又交换 |
2 6 8 3 1 5 7 4 | 3比6/8小 |
2 3 6 8 1 5 7 4 | 1比8 /6/3/2小 |
1 2 3 6 8 5 7 4 | 5比8/6小 |
1 2 3 5 6 8 7 4 | 7比8小 |
1 2 3 5 6 7 8 4 | 4比8/7/6/5小 |
1 2 3 4 5 6 7 8 | 完成排序 |
算法流程:
- 遍历数组
- 寻找arr[i]合适的插入位置
void insertionSort(int arr[], int n){
for(int i=1; i<n; i++)
{
//将当前位置数与其前面数字比较,如果小就交换位置
for(int j=i; j>0; j--)
{
if(arr[j-1]>arr[j])
swap(arr[j-1],arr[j]);
else
break;
}
}
}
跟选择排序的区别在于,二重循环在特殊条件下可以提前终止
理论上来说,插入排序比选择排序要快,但是执行起来却比选择排序慢
改进
因为插入排序在遍历的时候一直在交换
将交换改为赋值,就能提高性能
思想:2 6 8 3 1 5 7 4
当前遍历到的数是3,3复制一份出来,跟8比较,比8小,让第四个位置等于8。3比6小,让第3个位置等于9,3比2大,第二个位置为3
//改进:将交换改成赋值
void insertionSort2(int arr[], int n){
for(int i=1; i<n; i++)
{
int e = arr[i];
int j; //保存元素e应该插入的位置
//将当前位置数与其前面数字比较,如果小就将前面数向后移动一位
for(j=i; j>0 && arr[j-1]>e; j--)
{
arr[j] = arr[j-1];
}
arr[j] = e;
}
}
此时算法性能就比选择排序高
插入排序最大的优势就在于:内层循环可以提前终止,终止的条件是找到合适的插入位置。假设数组基本上是有序的,在这种情况下,内层循环就可以很快找到插入的位置,此时插入排序的效率会非常高。
测试当数组是近乎有序时,插入排序的性能:
总结:插入排序最差的时间复杂度是O(n^2),但是当数组近乎有序的情况下,时间复杂度接近O(n)。最好的情况下,对于有序的数组,时间复杂度O(n)