算法排序之插入排序算法

插入排序算法

时间复杂度:O(n^2)

思想:为当前数找到前面合适的插入位置

8 6 2 3 1 5 7 4

6比8小,交换

6 8 2 3 1 5 7 4

2比8小,交换

又比6小,又交换

2 6 8 3 1 5 7 4

3比6/8小

2 3 6 8 1 5 7 4

1比8 /6/3/2小

1 2 3 6 8 5 7 4

5比8/6小

1 2 3 5 6 8 7 4

7比8小

1 2 3 5 6 7 8 4

4比8/7/6/5小

1 2 3 4 5 6 7 8

完成排序

算法流程:

  1. 遍历数组
  2. 寻找arr[i]合适的插入位置
void insertionSort(int arr[], int n){
	for(int i=1; i<n; i++)
	{
		//将当前位置数与其前面数字比较,如果小就交换位置 
		for(int j=i; j>0; j--)
		{
			if(arr[j-1]>arr[j])
				swap(arr[j-1],arr[j]);	
			else
				break;
		}
	}
}

 

跟选择排序的区别在于,二重循环在特殊条件下可以提前终止

理论上来说,插入排序比选择排序要快,但是执行起来却比选择排序慢

 

改进

因为插入排序在遍历的时候一直在交换

将交换改为赋值,就能提高性能

 

思想:2 6 8 3 1 5 7 4

当前遍历到的数是3,3复制一份出来,跟8比较,比8小,让第四个位置等于8。3比6小,让第3个位置等于9,3比2大,第二个位置为3

//改进:将交换改成赋值 
void insertionSort2(int arr[], int n){
	for(int i=1; i<n; i++)
	{
		int e = arr[i];
		int j; //保存元素e应该插入的位置 
		//将当前位置数与其前面数字比较,如果小就将前面数向后移动一位 
		for(j=i; j>0 && arr[j-1]>e; j--)
		{
			arr[j] = arr[j-1];
		}
		arr[j] = e;
	}
}

 

此时算法性能就比选择排序高

 

插入排序最大的优势就在于:内层循环可以提前终止,终止的条件是找到合适的插入位置。假设数组基本上是有序的,在这种情况下,内层循环就可以很快找到插入的位置,此时插入排序的效率会非常高。

测试当数组是近乎有序时,插入排序的性能:

 

总结:插入排序最差的时间复杂度是O(n^2),但是当数组近乎有序的情况下,时间复杂度接近O(n)。最好的情况下,对于有序的数组,时间复杂度O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值