Prometheus连接多个指标

初识PromSQL

PromSQL看起来简短整洁,通俗易懂。乍一看很简单,但是当真正使用它的时候,就会发现Prometheus的语句苍白无力,微不足道。在网上关于PromSQL的博客,问答较少,官网上的教程不是很好看懂,而且大多都是在编程的基础上实验。下面根据公司使用Prometheus的情况就我自身理解来谈谈指标之间的聚合。

一、Prometheus二进制操作符

参考网上文章,PromSQL有15个二进制操作符,可以根据操作类型分为三组:

  1. 算术 + - * / ^ %

  2. 比较< > <= >= == !=

  3. 逻辑and unless or

对于不同类型的操作数,可以看一下具体的例子。

rabbitmq_queue_messages_ready  + rabbitmq_queue_messages_unacked 
rabbitmq_queue_messages_ready + rabbitmq_queue_messages_unacknowledged > 0

一对一匹配One to one

example 1:

在这里插入图片描述

一对多和多对一匹配

一对一的匹配是最直接的匹配。大多数的时候,on或则ignoring有助于返回一些想要的内容,这里的缺陷是。某些查询结果可能只显示一对一的基数。例如,碰巧查询在选定的时间范围内显示了一对一的数据关系,但通常可以是一对多。或则多对一。

Prometheus支持多对一和一对多的匹配。但必须通过向查询添加group_left或group_right修饰来指定。否则可能返回错误。

multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)

除非使用逻辑运算符 and unless or,否则Prometheus总是认为二元运算的至少一边具有1的技术,如果在查询的执行过程中,Prometheus在one端发现冲突(标签冲突)查询将失败,并出现一下错误:

found duplicate series for the match group <keys/values> on the <left|right> hand-side of the operation: <op>;
many-to-many matching not allowed: matching labels must be unique on one side

即使一方没有冲突,指定了group_leftgroup_right,查询仍然失败,报错:

multiple matches for labels: grouping labels must ensure unique matches

会报这个错误是因为prometheus对于多方面的每一个元素,应该只能从一个方面找到一个元素,否则,查询结果将变得不清晰
one to one匹配
在这里插入图片描述
many to one匹配

在这里插入图片描述
many to many

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

连接Prometheus并使用Python脚本进行操作,你可以使用Prometheus的Python客户端库来实现。这个库提供了一些方法和函数,可以方便地与Prometheus进行交互。 首先,你需要安装`prometheus_client`库。你可以使用以下命令来安装它: ``` pip install prometheus_client ``` 安装完成后,你可以在Python脚本中导入该库,并使用其中的函数和类来连接和操作Prometheus。 下面是一个简单的示例代码,展示了如何连接Prometheus并获取指标数据: ```python from prometheus_client import start_http_server, Summary # 定义一个Summary指标 REQUEST_TIME = Summary('request_processing_seconds', 'Time spent processing request') # 启动一个HTTP服务器,用于暴露指标 start_http_server(8000) # 模拟一个请求处理函数 @REQUEST_TIME.time() def process_request(): # 处理请求的逻辑 pass # 主程序入口 if __name__ == '__main__': # 模拟处理多个请求 for i in range(10): process_request() ``` 在上面的示例中,我们首先导入了`prometheus_client`库,并定义了一个名为`REQUEST_TIME`的Summary指标。然后,我们启动了一个HTTP服务器,用于暴露指标。接下来,我们定义了一个处理请求的函数,并使用`@REQUEST_TIME.time()`装饰器来记录请求处理时间。最后,在主程序中模拟处理多个请求。 你可以通过访问`http://localhost:8000/metrics`来查看暴露的指标数据。 这只是一个简单的示例,你可以根据自己的需求使用更多的函数和类来操作Prometheus。你可以参考`prometheus_client`库的文档来了解更多详细的用法和功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Energet!c

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值