53. Maximum Subarray (最大子数列)

53. Maximum Subarray (最大子数列)

题目链接

https://leetcode.com/problems/maximum-subarray/description/

题目描述

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.

题目分析

通过分析我们可以发现:
对于某个数字,如果它前面的一个数列的和小于0,那就没有再连续起来的必要了,一个数字加上一个负数比自己还小,这样还不如从自己重新开始。于是我们得到动态规划的状态转移方程:
sums[i]记录的是以第i个数字结束的数列的和的最大值
sums[i] = nums[i] + (sums[i - 1] >= 0 ? sums[i - 1] : 0)

方法:动态规划

算法描述

初始化sums[0] = nums[0], max = nums[0]
i = 1开始到i = nums.size() - 1
sums[i] = nums[i] + (sums[i - 1] >= 0 ? sums[i - 1] : 0)
sums[i]大于max时,max置为sums[i]

参考代码

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int max = nums[0];
        vector<int> sums;
        sums.resize(nums.size());
        sums[0] = nums[0];
        for (int i = 1; i < nums.size(); i++) {
            sums[i] = nums[i] + (sums[i - 1] > 0 ? sums[i - 1] : 0);
            max = sums[i] > max ? sums[i] : max;
        }
        return max;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值