【信贷风控30分钟精通4】风控与人工2

本文探讨了在人工智能快速发展的背景下,风控中如何平衡智能决策和人工价值。强调了异常识别、案例研究和黑产对抗中人的经验和洞察的重要性,同时介绍了完全智能决策(如小额信贷)和部分智能决策(如大额信贷)的应用策略,以及人工审核在弥补智能模型局限性中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

​编辑

发挥人的价值

异常识别

案例研究

黑产对抗

决策方案的选择

完全智能决策

部分智能决策


发挥人的价值

随着人工智能的快速发展,智能风控也许会替代那些人工重复进行的工作。在人工智能存在局限而人类具有优势的方向,长期来看,我们还需要持续投入人力进行挖掘和探索,从而保持整体风控能力处于良好的水平。我们可以看到,风控人员在异常识别、案例研究和黑产对抗方面依然能够发挥巨大价值。

异常识别

异常识别是利用风控人员的经验和综合分析能力,识别借款人在借款过程中的异常行为,从而判断欺诈或信用类风险。虽然机器学习方法中有一系列异常识别的算法,可以帮助我们轻松发现异常点,但是这些方法都是在有大量数据和完善的特征维度的情况下才适用。在不具备大量数据,或者特征能够捕捉的维度缺失的情况下,我们就需要借助人的识别能力了。人工智能可以在大样本、大数据情况下发挥巨大价值,但是,对于偶发的异常情况识别,人工更具优势。

为了识别异常,风控人员需要对借款过程中的行为和特点进行详细分析,并借助各类辅助工具对借款人进行综合判断。例如,审批人员可以通过手机号查询客户的微信或支付宝账户是否存在;审批人员可以通过照片等信息挖掘一些可以发现的细节,如借贷人员的工作细节。这些信息往往是难以量化的,而审批人员通过长期对案件的审核,形成“经验特征库”,可以有效地识别不良客户。

案例研究

案例研究是指对已经认定为欺诈或逾期的不良客户进行专门的分析和挖掘,目的是从这些案例中找出可能的风险线索或欺诈特征,从而为优化智能风控模型提供输入,或者直接产出有价值的风控策略。

之所以进行案例研究,是因为常规的模型方法都基于批量数据,往往忽略出现较少的个案情况,而潜在的风险恰恰是通过个案反映出来的。另外,通过对个案的分析和研究,我们还能够发现潜在的有效特征,这些特征可能并没有涵盖到之前的特征维度中。

案例研究通常需要多个团队协作。案例可能来自催收人员的发现、审批人员或客服人员的反馈。典型的案例分析流程如下。

  • (1)收集案例:从市场、客服、审批和催收等部门收集疑似欺诈案例。
  • (2)案例梳理:对案例涉及的个体特征和行为进行分析,尤其是未被量化的行为特征。
  • (3)案例定性:确定案例本身是不是真实欺诈,或者客户是不是可以提前防范的风险客户。
  • (4)关联案例排查:搜集具有相同特征的同类型案例,综合判断群体风险。
  • (5)特征提取:基于分析和同类案例调查,抽取可量化的特征。
  • (6)规则或模型应用:将特征总结成风险预防规则,或者放入模型进行训练。

整个流程中不但有定量分析,而且有定性分析。除针对单个案例或批量案例进行分析的常规手段以外,我们还可以借助关联图谱等可视化方法对案例进行关联分析。此阶段,我们尤其需要考虑利用可视化方法进行分析,因为数据展示的方式会影响数据的可读性和识别效果。可视化的目的是将数据以图形的形式展示,从而使得“最强”的模式识别器-人眼识别,能够发挥作用,即从直观的图中发现异常识别模式。

黑产对抗

信贷的市场规模巨大,一些不法分子找准了其中的漏洞,就可能获得大量的非法收益。目前,信贷欺诈已经形成了一个产业链,也就是信贷黑产。

黑产对抗是指针对市场上潜在的黑产欺诈群体进行跟踪分析,掌握他们制造欺诈案件的手段,有针对性地设计欺诈防范措施以对抗黑产的一系列行为。黑产从业者不断通过新的方法和手段对金融机构进行渗透,方法“灵活”,手段多样,往往会有针对性地“迷惑”常规的风控措施。信贷风控基于历史数据训练的模型和规则都有一定的滞后性,因此需要风控人员深入黑产内部,提前了解动向,从而提前防范可能产生的欺诈风险。

对于黑产的研究,初级方法是通过各种社交媒体,关注黑产动向,或者关注他人发布的黑产信息,从而获得相关线索,具体分为以下4点。

  • 新闻:订阅信贷行业的新闻信息,尤其关注已经曝露的黑产新闻信息。
  • 公众号:关注各类揭露黑产的公众号,研读相关案例。
  • 贴吧:跟踪各类“撸贷”贴吧,以及“撸贷”方法的交流贴吧。
  • 微信群/QQ群:通过进入“撸贷”产品的微信群或QQ群获得相关黑产信息。

高级方法则需要专业人员到相关的黑产群体中收集信息。通过上述方法,我们可能获取一些关键的风险线索,如申请人员都集中在某个群、集中购买某些信贷分期商品、地址都是同一个区域、身份证是以“从图库上传”而非“拍摄”方式录入系统、身份证是拍摄屏幕上的照片和申请人设备具有相同的WiFi连接列表等。根据这些关键线索,我们可以进一步进行特征挖掘,为后续的反欺诈规则制订和模型应用提供输入。

决策方案的选择

机器学习模型带来了生产力的提高,价值巨大,当然,它也存在前文提到的局限性。相比之下,人在推理、异常处理和灵活性等方面有其优势,而在效率方面,具有天然瓶颈。针对不同的业务场景,我们可以合理地安排智能决策与人工决策的组合,以达到效益的最大化。通常,我们可以选择完全智能决策方案和部分智能决策方案。另外,部分传统金融机构可能采用完全人工决策模式,此处我们不再展开。

完全智能决策

完全智能决策是指在整个授信过程中完全由智能模型自动进行审批的方式。在小额信贷领域,可以做到完全智能决策,主要是因为小额信贷有下列3个特点。

  • 单笔借款金额低。由于金额低,每笔贷款对整个资产组合的影响较小,因此,对于小额贷款的审核,重点不是消灭坏账,而是将坏账控制在一个合理的范围。那么,在申请人数和放款人数都达到一定数量的情况下,借助模型来进行贷款审批就成为可能。
  • 对成本敏感。同样由于金额低,单笔借款的盈利对各项成本是非常敏感的。一般来说,决定每笔借款是否能盈利的主要因素有资金成本、分摊审核成本、分摊坏账成本和获客成本。人工审核的明显劣势是分摊的审核成本非常高,而且边际效应极差。在规模扩大时,人工审核会增加额外的管理成本。相比人工审核,模型自动决策会产生非常好的规模效应。也就是说,在信贷规模逐步扩大时,相应的人员不会成比例地增加,这样就可以大幅降低人力成本。
  • 对客户体验的要求更高:小额借款通常是进行临时消费或面临短期快速的资金需求,因此,客户通常的需求是希望能在很短的时间内获得授信。人工无法做到及时响应,而随着智能技术的发展,包括第三方支付、身份认证、第三方数据服务、活体及人脸识别等,在完全没有人工干预的情况下,根据预先设定的业务规则完成客户受理、审核和放款已经完全没有任何技术上的障碍。

完全智能决策具体落地,就是将整个决策过程设计到I系统之中,应用身份验证、人脸识别等基础服务,由模型加策略方式进行风险判断,从而实现全自动审批放款。智能风控系统的信贷全流程,即渠道引流→客户注册→申请借款→自动信贷审核→放款→贷后智能催收→复贷,完全不需要人工参与,整个流程自动完成。

部分智能决策

部分智能决策是指,在信贷审批过程中,部分引入智能风控进行审核,由自动审批和人工审批一起完成整个授信流程。大额信贷,尤其是针对企业的信贷产品,人工审核还是不可或缺的,也就是说,授信金额越大,审核人员的参与度越高。大额信贷产品需要部分人工参与,主要有下列3个因素。

  • 单笔额度大。每一次授信对整体资产质量的影响都很大,这时,金融机构对坏账基本持“零容忍”态度。在量化模型无法提供足够的决策可信度时,只能通过人工进行审核。
  • 人工审核性价比高。大额信贷由于金额大,审核一笔借款的人工成本比例很低,大额贷款的收益足以覆盖人工成本。长期的实践表明,在大额贷款中,人工审核的效果是非常好的,能够有效控制各类风险,而自动化审核是否有效,还需要更多的时间进行实验和验证。
  • 时效性方面的容忍度高。大额借款客户对借款时效要求并没有消费信贷产品那么高,大资金需求通常会提前数周到数月进行规划,因此,这留给审核人员足够的时间进行电话调查或现场尽调。

部分智能决策的典型方式是将风控审批分为机器自动审批和人工审批两个阶段。在机器自动审批阶段,由智能风控系统自动评估借款人信用级别,进而对客户进行分层,低风险层级客户自动通过,高风险层级客户自动拒绝,处于“灰色”地带的客户会进入人工审批阶段。人工审批阶段的审核人员结合模型、策略和专业人士经验进行风险评判,最终做出放款与否的决策。

采用完全智能决策的机构需要保留一定比例的人工审核。抽检部分案件(尤其针对智能风控模型识别不够准确的部分)进行核实,重点是寻找整个授信过程中的可疑点,发现潜在风险,以弥补智能风控的不足,同时能够发挥人工识别风险的优势。在这种情况下,审批人员已经不再单纯地从事审批工作,而是更多地参与到异常案件识别和案例研究中。

print('要天天开心呀')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水木流年追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值