搜索算法-三个简单的小问题

看到了一些搜索的小问题,总结如下:

1.布尔表达式可满足性问题

输入:n个布尔变量,关于他们的k个析取布尔式

 输出:是否存在一个他们的一种赋值,使得所有k个布尔析取式皆为真

通过不断地为他们分类来建立树,每一层多增加一个变量,每个儿子都有T和F两种取值可能。


2.8-Puzzle问题

输入:具有八个编号的小方块的魔方的一面

输出:经过移动使得数字的排列具有某种性质

”也是转化为树的搜索问题,以输入为根节点,每两个儿子为当前根节点移动一次的可能情况


3.Hamiltonian环问题

输入:具有n个结点的连通图G=(V,E)

输出:G中是否具有Hamilton环

备注:沿着G的n条边经过每个节点一次,并回到起始结点的环称为G的一个Hamiltonian环

同样转化为树的搜索问题


阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,下面是一个简单的三维路径规划算法的Python实现,使用了A*算法和欧几里得距离作为启发函数: ```python import heapq import math # 定义三维空间中的节点类 class Node: def __init__(self, x, y, z): self.x = x self.y = y self.z = z self.g = 0 # 节点的实际代价 self.h = 0 # 节点的启发代价 self.parent = None # 定义节点之间的距离计算方法 def distance_to(self, other): dx = self.x - other.x dy = self.y - other.y dz = self.z - other.z return math.sqrt(dx*dx + dy*dy + dz*dz) # 定义节点之间的比较方法 def __lt__(self, other): return self.g + self.h < other.g + other.h # 定义三维空间中的网格类 class Grid: def __init__(self, width, height, depth): self.width = width self.height = height self.depth = depth self.grid = [[[' ' for z in range(depth)] for y in range(height)] for x in range(width)] # 定义网格中的障碍物和自由空间 def set_obstacle(self, x, y, z): self.grid[x][y][z] = '#' def set_free(self, x, y, z): self.grid[x][y][z] = ' ' def is_free(self, x, y, z): return self.grid[x][y][z] == ' ' # 定义三维空间中的路径规划方法 def find_path(self, start, goal): # 初始化起始节点和目标节点 start.g = 0 start.h = start.distance_to(goal) open_list = [start] closed_list = [] # 开始搜索路径 while open_list: current = heapq.heappop(open_list) # 弹出开放列表中最小代价的节点 if current == goal: path = [] while current: path.append(current) current = current.parent return path[::-1] # 返回反转的路径 closed_list.append(current) # 将当前节点加入闭合列表 # 遍历当前节点的所有相邻节点 for dx in range(-1, 2): for dy in range(-1, 2): for dz in range(-1, 2): if dx == dy == dz == 0: continue x, y, z = current.x + dx, current.y + dy, current.z + dz if x < 0 or x >= self.width or y < 0 or y >= self.height or z < 0 or z >= self.depth: continue if self.grid[x][y][z] == '#': continue neighbor = Node(x, y, z) neighbor.g = current.g + current.distance_to(neighbor) neighbor.h = neighbor.distance_to(goal) neighbor.parent = current # 如果相邻节点已经在闭合列表中,则跳过 if neighbor in closed_list: continue # 如果相邻节点已经在开放列表中,则更新其代价和父节点 if neighbor in open_list: index = open_list.index(neighbor) if open_list[index].g > neighbor.g: open_list[index].g = neighbor.g open_list[index].parent = current else: # 否则,将相邻节点加入开放列表 heapq.heappush(open_list, neighbor) # 如果没有找到路径,则返回空列表 return [] # 测试路径规划算法 if __name__ == '__main__': grid = Grid(5, 5, 5) grid.set_obstacle(1, 1, 0) grid.set_obstacle(1, 2, 0) grid.set_obstacle(2, 1, 0) grid.set_obstacle(2, 2, 0) start = Node(0, 0, 0) goal = Node(4, 4, 4) path = grid.find_path(start, goal) if path: for node in path: print(node.x, node.y, node.z) else: print('No path found') ``` 上面的代码实现了一个简单的三维空间中的路径规划算法,其中障碍物用字符“#”表示,自由空间用空格表示。你可以根据需要修改障碍物和自由空间的表示方,以及启发函数的计算方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

草帽-路飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值