caffe 训练小知识

caffe均值文件的设置

(1)可以直接直接导入.tonpy的文件

a.现在将均值文件转化为npy的格式

#!/usr/bin/env python-- mean.binaryproto to python mean.npy file
import numpy as np
import sys,caffe

#装换成python能够识别的一种均值文件的格式需要caffe
root='/home/pengshan/caffe/'  #root
mean_proto_path=root+'data/sy1/train_mean.binaryproto'    #mean.binaryproto road
mean_npy_path=root+'data/sy1/train_mean.npy'              #mean.npy road

blob=caffe.proto.caffe_pb2.BlobProto()     #protobuf blob
data=open(mean_proto_path,'rb').read()     #mean.binaryproto
blob.ParseFromString(data)                 #blob

array=np.array(caffe.io.blobproto_to_array(blob))  
mean_npy=array[0]                          
np.save(mean_npy_path,mean_npy) 

b.图片预处理的时候,放在均值的相应位置

import numpy as np

mean_file = 'data/CarDataSet/CarCreate/train_mean.npy'
transformer.set_mean('data', np.load(mean_file))  #mean_file为npy文件的路径

(2)可以直接写入数值,然后再导入

在图片预处理的时候:

transformer.set_mean('data',np.array([129.92238600656736,39.10555619302714,4.3888219052695865])) #减去均值

卷积、池化、反卷积的计算

 

Conv层、池化

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值