常用的性能度量指标有:「精确率」、「召回率」、「F1」、「TPR」、「FPR」。
预测为真 | 预测为假 | |
---|---|---|
真实为真 | TP(true positive) | FN(false negative) |
真实为假 | FP(false positive) | TN(true negative) |
「精确率」Precision=TP/(TP+FP)
「召回率」Recall=TP/(TP+FN)
「真正例率」即为正例被判断为正例的概率TPR=TP/(TP+FN)
「假正例率」即为反例被判断为正例的概率FPR=FP/(TN+FP)
精确率又称查准率,顾名思义适用于对准确率较高的应用,例如网页检索与推荐。召回率又称查全率,适用于检测信贷风险、逃犯信息等。精确率与召回率是一对「矛盾」的度量,所以需要找一个「平衡点」,往往使用F1是精确率与召回率的调和平均值:
(1) 「错误率和准确率」
错误率:
准确率:acc=1-e
(2)「AUC与ROC曲线」
对于0、1分类问题,一些分类器得到的结果并不是0或1,如神经网络得到的是0.5、0.6等,此时就需要一个「阈值cutoff」,那么小于阈值的归为0,大于的归为1,可以得到一个分类结果。
「ROC曲线」(Receiver Operational Characteristic Curve)是以False Positive Rate为横坐标,True Postive Rate为纵坐标绘制的曲线。
曲线的点表示了在「敏感度」和「特殊性」之间的平衡,例如越往左,也就是假阳性越小,则真阳性也越小。曲线下面的面积越大,则表示该方法越有利于区分两种类别。
「AUC」即为ROC曲线所覆盖的「区域面积」。
hi 认识一下?
❝微信关注公众号:「全都是码农」 (allmanong)
❞
你将获得:
关于人工智能的所有面试问题「一网打尽」!未来还有「思维导图」哦!
回复「121」 立即获得 已整理好121本「python学习电子书」。
回复「89」 立即获得 「程序员」史诗级必读书单吐血整理「四个维度」系列89本书。
回复「167」 立即获得 「机器学习和python」学习之路史上整理「大数据技术书」从入门到进阶最全本(66本)
回复「18」 立即获得 「数据库」从入门到进阶必读18本技术书籍网盘整理电子书(珍藏版)
回复「56」 立即获得 我整理的56本「算法与数据结构」书
未来还有人工智能研究生课程笔记等等,我们一起进步呀!