多目标优化 MOP (三):遗传算法 SPEA2+SDE 2014

本文提出了一种基于转移的密度估计算法SDE,旨在解决多目标优化算法在高维度问题上的收敛性和多样性问题。SDE通过改变个体的位置来评估其密度,从而改善选择压力,增强算法的性能。实验表明,将SDE整合到NSGA-II、SPEA2和PESA-II等算法中,能显著提升它们在多目标问题上的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:Shift-based density estimation for Pareto based algorithms in many-objective optimization

Pareto-based evolutionary multiobjective optimization (EMO) algorithms 在解决many-objective problems(MaOP)时常遇到问题,因为在高维空间中pareto dominance不起作用,而diversity maintenance mechanisms多样性维护机制在稀疏的区域远离pareto front。
目前有两种解决此问题的方法:
  1. 改变pareto dominance 关系
  2. 改变多样性维护机制

这篇文章提出了 shift-based density estimation (SDE) strategy基于转移的密度估计策略,SDE可以同时兼顾收敛性与分布的多样性。SDE是通过改变多样性的方式提高选择压力的。SDE的原理很简单,就是将收敛性不好的个体转移到拥挤区域并分配一个大的density value,这样在选择过程中很容易被删除。

Density Estimation in EMO Algorithms EMO中的密度估计算法:

EMO算法中有很多密度估计的方法,他们基本都是作用于个体的不同邻居,或不同的方法的。比如niched Pareto genetic algorithm(NPGA)考虑到小生境中的个体并计算小生境的拥挤程度,strength Pareto EA (SPEA)采用基于聚类的方法估计拥挤程度,NSGA-II定义了拥挤距离crowding distance反映一个个体的密度,这个方法只考虑一个个体两边的最近的个体,grid-based EMO 比如 PESA-II和dynamic multiobjective EA (DMOEA)通过对hyperbox中个体计数估计密度。SPEA2考虑了种群中个体的K个近邻,距离的计算方式可以采用Euclidean distance欧式距离或者Tchebycheff distance切比雪夫距离。

Shift-Based Density Estimation (SDE)基于转移的密度估计:

当估计一个个体p的密度时,SDE通过对比收敛性将p的位置转移到种群中其他个体的位置上。具体地讲就是当一个个体p在一个目标上表现比另一个个体好时就将p转移到另一个个体的当前目标位置,否则p的位置不动。如公式所示,是p在种群P中新的密度估计,N是种群个数。

是两个个体的相似度,的转换后的点

举个例子,如图所示,在两个目标最小化问题的二维图中,四个点A(10, 17), B(1, 18), C(11, 6), and D(18, 2), B 被转移到  (10, 18) ,因为 B1 = 1 < A1 = 10,  C 和 D 转移到  (11, 17) and (18, 17), respectively, since C2 = 6 < A2 = 17 and D2 = 2 < A2 = 17.可以看到,A原来与其他点具有较低的相似度,但是转移后有两个近邻此时被分配较高密度值。这是因为B和C在收敛性上比A好。虽然在某个目标值上不如A,但是其他目标上比A远远有优势。因此SDE中没有明显优势的点会被分配一个高的密度值。

为了进一步说明SDE的效果,对最小化问题四种情况下的收敛性和多样性进行说明:(a)很好的收敛性和多样性,(b)收敛性不好和多样性好 (c)收敛性好和多样性不好 (d)收敛性和多样性都不好

从(c)(d)中可以看出不管收敛性好不好,如果多样性差的话个体种群会聚集在拥挤区域。

不管是收敛性不好还是多样性不好,个体都会有几个近邻,因此,SDE兼顾了多样性和收敛性。

Integrating SDE into NSGA-II, SPEA2, and PESA-II将SDE与三种算法相结合
 
NSGA-II +SDE: nondominated sorting and crowding distance-based fifitness assignment strategies
 
SPEA2+ SDE:k -th nearest neighbor method
 
PESA-II +SDE:grid-based diversity maintenance mechanism
 
三种算法在测试问题上的表现:
DTLZ1-7:测试指标:IGD(越小越好)
TSP问题:测试指标:HV(越大越好),因为pareto front 未知所以用HV
 
在30个测试问题中最后测试的效果:
NSGA-II +SDE在DTLZ和TSP的4,6,10目标问题上(24/30)比NSGA-II效果好
PESA-II +SDE在DTLZ和TSP的4,6,10目标问题上(29/30)比PESA-II 效果好
SPEA2+ SDE在DTLZ和TSP的4,6,10目标问题上(28/30)比SPEA2 效果好
 
三种算法效果比较  SPEA2+SDE>PESA-II+SDE>NSGA-II+SDE
 
SPEA2+SDE与流行算法的比较:DTLZ 1-7的4,6,10目标21个问题中SPEA2+SDE 9个best
MOEA/D:6个best,MSOPS:4个, :2个, HypE 、DMO 都是0个
TSP 9个问题中SPEA2+SDE 8个 best,MOEA/D:1个best
一个细节问题是 SPEA2+SDE的参数k没有明显的影响,在SPEA2中,k用于适应度分配过程,当非支配解的个数小于存档个数时,对支配解排序,而MaOP问题中绝大部分解都是非支配解,个数远多于存档数量。这种情况下K值作用不大。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值