数组方法
目录
求和 a.sum()
最大最小值 a.max() a.min()
最大最小值的位置a.argmax()
均值a.mean() a.average
标准差 std() var()
ptp方法 计算最大最小之差
round方法 近似到某个数,默认为整数
clip 方法 将数值限制在某个范围
In [2]:
a
=
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]])
求所有元素的和:
In [3]:
sum(a)
Out[3]:
指定求和的维度:
沿着第一维求和:
In [4]:
sum(a, axis=0)
Out[4]:
沿着第二维求和:
In [5]:
sum(a, axis=1)
Out[5]:
沿着最后一维求和:
In [6]:
sum(a, axis=-1)
Out[6]:
或者使用 sum
方法:
In [7]:
a.sum()
Out[7]:
In [8]:
a.sum(axis=0)
Out[8]:
In [9]:
a.sum(axis=-1)
Out[9]:
求所有元素的乘积:
In [10]:
a.prod()
Out[10]:
或者使用函数形式:
In [11]:
prod(a, axis=0)
Out[11]:
In [12]:
from
numpy.random
import
rand
a
=
rand
(
3
,
4
)
%
precision
3
a
Out[12]:
全局最小:
In [13]:
a.min()
Out[13]:
沿着某个轴的最小:
In [14]:
a.min(axis=0)
Out[14]:
全局最大:
In [15]:
a.max()
Out[15]:
沿着某个轴的最大:
In [16]:
a.max(axis=-1)
Out[16]:
使用 argmin, argmax
方法:
In [17]:
a.argmin()
Out[17]:
In [18]:
a.argmin(axis=0)
Out[18]:
可以使用 mean
方法:
In [19]:
a = array([[1,2,3],[4,5,6]])
In [20]:
a.mean()
Out[20]:
In [21]:
a.mean(axis=-1)
Out[21]:
也可以使用 mean
函数:
In [22]:
mean(a)
Out[22]:
还可以使用 average
函数:
In [23]:
average(a, axis = 0)
Out[23]:
average
函数还支持加权平均:
In [24]:
average(a, axis = 0, weights=[1,2])
Out[24]:
用 std
方法计算标准差:
In [25]:
a.std(axis=1)
Out[25]:
用 var
方法计算方差:
In [26]:
a.var(axis=1)
Out[26]:
或者使用函数:
In [27]:
var(a, axis=1)
Out[27]:
In [28]:
std(a, axis=1)
Out[28]:
将数值限制在某个范围:
In [29]:
a
Out[29]:
In [30]:
a.clip(3,5)
Out[30]:
小于3的变成3,大于5的变成5。
计算最大值和最小值之差:
In [31]:
a.ptp(axis=1)
Out[31]:
In [32]:
a.ptp()
Out[32]:
近似,默认到整数:
In [33]:
a = array([1.35, 2.5, 1.5])
这里,.5的近似规则为近似到偶数值,可以参考:
In [34]:
a.round()
Out[34]:
近似到一位小数:
In [35]:
a.round(decimals=1)
Out[35]: