A - Number Sequence

Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.

Input The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 +100;
int n, m;
int P[10100];
int S[N];
void GetNextval(int *P, int nextval[])
{
    int p_len = m;
    int i = 0;   // P 的下标
    int j = -1;
    nextval[0] = -1;

    while (i < p_len)
    {
        if (j == -1 || P[i] == P[j])
        {
            i++;
            j++;

            if (P[i] != P[j])
                nextval[i] = j;
            else
                nextval[i] = nextval[j];  // 既然相同就继续往前找真前缀
        }
        else
            j = nextval[j];
    }
}
int KMP(int *S, int *P, int next[])
{
    GetNextval(P, next);

    int i = 0;  // S 的下标
    int j = 0;  // P 的下标
    int s_len = n;
    int p_len = m;

    while (i < s_len && j < p_len)
    {
        if (j == -1 || S[i] == P[j])  // P 的第一个字符不匹配或 S[i] == P[j]
        {
            i++;
            j++;
        }
        else
            j = next[j];  // 当前字符匹配失败,进行跳转
    }

    if (j == p_len)  // 匹配成功
        return i - j + 1;

    return -1;
}
int main(){
    int next[10100];
    int t;
    scanf("%d", &t);
    while(t--){
        scanf("%d%d", &n, &m);
        for(int i = 0; i <= n - 1; i++){
            scanf("%d", &S[i]);
        }
        for(int i = 0; i <= m - 1; i++){
            scanf("%d", &P[i]);
        }
//        int x = KMP(S, P, next);
        if(n < m)printf("-1\n");
        else printf("%d\n", KMP(S, P, next));
    }
    return 0;
}

Sure, I can help you with that! Here's a Python program that implements the commands you've described: ```python class Sequence: def __init__(self): self.sequences = {} def new(self, id): if id >= 200000: print("Error: id should be less than 200000") return self.sequences[id] = [] def add(self, id, num): if id not in self.sequences: self.new(id) self.sequences[id].append(num) def merge(self, id1, id2): if id1 not in self.sequences or id2 not in self.sequences: print("Error: invalid ids") return self.sequences[id1] += self.sequences[id2] self.sequences[id2] = [] def unique(self, id): if id not in self.sequences: print("Error: invalid id") return self.sequences[id] = list(set(self.sequences[id])) def out(self, id): if id not in self.sequences: print("Error: invalid id") return sequence = sorted(self.sequences[id]) print(" ".join(str(num) for num in sequence)) sequence = Sequence() # Example usage: sequence.new(1) sequence.add(1, 5) sequence.add(1, 2) sequence.add(1, 3) sequence.add(1, 5) sequence.unique(1) sequence.out(1) sequence.new(2) sequence.add(2, 6) sequence.add(2, 1) sequence.add(2, 4) sequence.add(2, 3) sequence.merge(1, 2) sequence.out(1) ``` Here's an explanation of how it works: - The `Sequence` class represents a collection of sequences of numbers, identified by an integer ID. - The `new` method creates a new sequence with the specified ID. - The `add` method adds a number to the sequence with the specified ID. - The `merge` method merges two sequences with the specified IDs into one, and empties the second sequence. - The `unique` method removes any duplicate elements from the sequence with the specified ID. - The `out` method outputs the elements of the sequence with the specified ID, sorted in ascending order and separated by spaces. You can test the program by calling the methods on a `Sequence` instance, as shown in the example usage at the end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值