进化策略与进化规划算法(ES与EP)

github: 智能算法的课件和参考资料以及实验代码

 

进化策略和遗传算法统称为进化算法,二者的思想很类似,但步骤和应用方向有所差别。

具体关于这两种算法介绍可以下载课件查看

 

我们举个二元函数最大值优化问题,分别用这两种算法简单搜索最优值:

用matlab实现:

ES:

f2.m

function y = f2(x1, x2)
% 二元函数求最大值的优化问题 x1∈[-3.0, 12.1], x2∈[4.1, 5.8]
y = 21.5 + x1 * sin(4 *pi * x1) + x2 * sin(20 * pi * x2);

ES.m

clear
clc
N=10; % 初始种群规模
x1=15.1*rand(1,N)-3; 
x2=1.7*rand(1,N)+4.1;
X=[x1;x2]; % 生成初始种群矩阵,一列表示一个可行解
sigma=rand(2,N);
T=50; % 迭代次数
maxf=0; % 记录最大适应度
for t=1:T
       lamda=1;
       while lamda<=7*N
           pos=1+fix(rand(1,2)*(N-1)); % [1,9]范围的二元行向量 此处范围错误,应为[1, 10]
        % pa1、pa2分别是X中的一个随机解,可能相同
           pa1=X(:,pos(1));
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youaresherlock

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值