POJ 3186 Treats for the Cows 区间dp

http://poj.org/problem?id=3186

类似的区间dp: https://blog.csdn.net/qq_32259423/article/details/89221957

题意:

给你n个数字v(1),v(2),...,v(n-1),v(n),每次你可以取出最左端的数字或者取出最右端的数字,一共取n次取完。假设你第i次取的数字是x,你可以获得i*x的价值。你需要规划取数顺序,使获得的总价值之和最大。

思路:

考虑区间dp, dp[i][j]表示最后取从i到j之间的数时,这些数能贡献的最大价值.

递推式: dp[i][j]=max(a[i]*(n-j+i)+dp[i+1][j],a[j]*(n-j+i)+dp[i][j-1])

其中, max里第一项是先取i数字(头)的情况, 第二项是先取j数字(尾)的情况

以第一项为例, 从i+1到j共用掉n,n-1,n-2,...,n-j+i+1这些乘数, 那么a[i]的乘数就是n-j+i了.

for的顺序: 先让区间长度短的计算完毕, 才能算长的, 所以外层枚举区间长度,内层枚举起点即可.

代码:

//#include<bits/stdc++.h>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fuck(x) std::cout<<"["<<#x<<"->"<<x<<"]"<<endl;
using namespace std;
typedef long long ll;

const int M=2e5+5;
const int inf=1e9+5;
const int mod=1e9+7;
//memset(a,0x3f,sizeof(a));

int dp[2005][2005];

int a[2005];

int main() {
    memset(dp,0,sizeof(dp));
    int n;
    scanf("%d",&n);
    for(int i=1; i<=n; i++) {
        scanf("%d",&a[i]);
    }
    for(int ii=0; ii<=n; ii++) {
        for(int i=1; i+ii<=n; i++) {
            int j=ii+i;

            if(i==j)
                dp[i][j]=a[i]*(n-j+i);
            else {
                if(i!=n)
                    dp[i][j]=max(dp[i][j],a[i]*(n-j+i)+dp[i+1][j]);
                if(j!=0)
                    dp[i][j]=max(dp[i][j],a[j]*(n-j+i)+dp[i][j-1]);
            }
        }
    }
    printf("%d\n",dp[1][n]);
    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值