题意: 一个1000*1000的矩阵中有20个炸弹, 问这个矩阵中, 不包含这20个炸弹的子矩阵有多少个.
思路: 所有的子矩阵个数: n*(n+1)*m*(m+1)/4
用20位2进制i表示有无第j个炸弹的状态.
对于这个状态包含的所有炸弹, 找到其左上(x1, y1)和右下角(x2, y2)坐标.
易知, 包含这个矩阵的所有矩阵的个数是左上角个数(x1*x2)乘右下角个数(n-x2+1)*(m-y2+1).
答案所求为: 不包含炸弹的矩阵个数, =所有矩阵个数
-Σ包含任意1个炸弹的矩阵个数
+Σ包含任意2个炸弹的矩阵个数
-Σ包含任意3个炸弹的矩阵个数
+Σ包含任意4个炸弹的矩阵个数
...
代码:
#include<bits/stdc++.h>
#define fuck(x) std::cout<<"["<<#x<<"->"<<x<<"]"<<endl;
using namespace std;
typedef long long ll;
const int M=2e5+5;
const int inf=1e9+5;
const int mod=1e9+7;
ll ans;
int n,m,k;
int x[1005];
int y[1005];
int main() {
int _;
scanf("%d",&_);
while(_--) {
scanf("%d%d%d",&n,&m,&k);
for(int i=0; i<k; i++) {
scanf("%d%d",&x[i],&y[i]);
}
ans=1ll*n*(n+1)*m*(m+1)/4;//总数
for(int i=1; i<(1<<k); i++) {//枚举状态
int x1=inf,x2=-inf,y1=inf,y2=-inf;
int cnt=0;
for(int j=0; j<k; j++) {//枚举炸弹
int now=1<<j;
if(i&now) {//如果当前状态有这个炸弹
cnt++;
x1=min(x1,x[j]);
x2=max(x2,x[j]);
y1=min(y1,y[j]);
y2=max(y2,y[j]);
}
}
ll temp=1ll*x1*y1*(n-x2+1)*(m-y2+1);
if(cnt%2==1)//减去奇数个炸弹的
ans-=temp;
else//加上偶数个炸弹的
ans+=temp;
}
printf("%I64d\n",ans);
}
return 0;
}