【Gym - 101350G Snake Rana】 容斥原理

G - Snake Rana




Old Macdonald wants to build a new hen house for his hens. He buys a new rectangular area of size N by M. The night before he builds the hen house, snake Rana devises an evil plan to plant bombs in K distinct cells in the area to kill the hens and eat them for dinner later.

The morning of, Old Macdonald notices that each of the K cells, where snake Rana planted a bomb, have a marking on them. That won’t stop him though, all he must do is build the hen house in an area with no bombs.

Assume that rows are numbered from top to bottom, and columns are numbered from left to right. Old Macdonald now wants to know the number of ways he can choose sub-rectangles of top left coordinates (x1, y1) and bottom right coordinates (x2, y2) (x1 ≤ x2) (y1 ≤ y2) such that there are no bombs in the sub rectangle.

Input

The first line of input is T – the number of test cases.

The first line of each test case is three integers NM, and K (1 ≤ N, M ≤ 104) (1 ≤ K ≤ 20).

The next K lines each contains distinct pair of integers xy (1 ≤ x ≤ N) (1 ≤ y ≤ M)- where (x, y) is the coordinate of the bomb.

Output

For each test case, output a line containing a single integer - the number of sub-rectangles that don’t contain any bombs.

Example
Input
3
2 2 1
2 2
6 6 2
5 2
2 5
10000 10000 1
1 1
Output
5
257
2500499925000000

题意:有一块n*m的矩形,其中有k个格子中有炸弹,告诉你炸弹的坐标,问有多少种矩形的取法,使得取得的矩形中不含有炸弹。


分析:容斥原理的应用。先计算所有格子的组合方法,然后减去只选奇数个炸弹的取法,加上只选偶数个炸弹的取法。用二进制表示炸弹总的取法。


代码如下:

#include <map>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long

using namespace std;
const int MX = 1e4 + 5;
const int mod = 1e9 + 7;
const int INF = 1e9 + 5;

struct node{
    LL x, y;
}a[30];

int main(){
    int t;
    scanf("%d", &t);
    while(t--){
        LL n, m, k;
        scanf("%I64d%I64d%I64d", &n, &m, &k);
        for(int i = 0; i < k; i++){
            scanf("%I64d%I64d", &a[i].x, &a[i].y);
        }
        LL ans = (1+n)*n/2 * (1+m)*m/2;
        for(int i = 1; i < (1 << k); i++){
            LL minx = INF, miny = INF, maxx = -1, maxy = -1;
            int cnt = 0;
            for(int j = 0; j < k; j++){
                if(i >> j & 1){
                    minx = min(minx, a[j].x);
                    miny = min(miny, a[j].y);
                    maxx = max(maxx, a[j].x);
                    maxy = max(maxy, a[j].y);
                    cnt++;
                }
            }
            LL res = minx * miny * (n - maxx + 1) * (m - maxy + 1);
            if(cnt & 1) ans -= res;
            else ans += res;
        }
        printf("%I64d\n", ans);
    }
    return 0;
}


Old Macdonald wants to build a new hen house for his hens. He buys a new rectangular area of size N by M. The night before he builds the hen house, snake Rana devises an evil plan to plant bombs in K distinct cells in the area to kill the hens and eat them for dinner later.

The morning of, Old Macdonald notices that each of the K cells, where snake Rana planted a bomb, have a marking on them. That won’t stop him though, all he must do is build the hen house in an area with no bombs.

Assume that rows are numbered from top to bottom, and columns are numbered from left to right. Old Macdonald now wants to know the number of ways he can choose sub-rectangles of top left coordinates (x1, y1) and bottom right coordinates (x2, y2) (x1 ≤ x2) (y1 ≤ y2) such that there are no bombs in the sub rectangle.

Input

The first line of input is T – the number of test cases.

The first line of each test case is three integers NM, and K (1 ≤ N, M ≤ 104) (1 ≤ K ≤ 20).

The next K lines each contains distinct pair of integers xy (1 ≤ x ≤ N) (1 ≤ y ≤ M)- where (x, y) is the coordinate of the bomb.

Output

For each test case, output a line containing a single integer - the number of sub-rectangles that don’t contain any bombs.

Example
Input
3
2 2 1
2 2
6 6 2
5 2
2 5
10000 10000 1
1 1
Output
5
257
2500499925000000
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值