(12)工业界推荐系统-小红书推荐场景及内部实践【交叉结构】

(1)工业界推荐系统-小红书推荐场景及内部实践【业务指标、链路、ItemCF】
(2)工业界推荐系统-小红书推荐场景及内部实践【UserCF、离线特征处理】
(3)工业界推荐系统-小红书推荐场景及内部实践【矩阵补充、双塔模型】
(4)工业界推荐系统-小红书推荐场景及内部实践【正负样本选择】
(5)工业界推荐系统-小红书推荐场景及内部实践【线上召回和模型更新】
(6)工业界推荐系统-小红书推荐场景及内部实践【其他召回通道】
(7)工业界推荐系统-小红书推荐场景及内部实践【冷启动问题1】
(8)工业界推荐系统-小红书推荐场景及内部实践【冷启动问题2】
(9)工业界推荐系统-小红书推荐场景及内部实践【排序模型】
(10)工业界推荐系统-小红书推荐场景及内部实践【排序模型的特征】
(11)工业界推荐系统-小红书推荐场景及内部实践【粗排三塔模型】

推荐系统链路

在这里插入图片描述

Factorized Machine

线性模型

在这里插入图片描述

二阶交叉特征

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考论文:Factorization Machines

深度交叉网络(DCN)

在这里插入图片描述

交叉层

在这里插入图片描述
在这里插入图片描述

交叉网络 (Cross Network)

在这里插入图片描述
在这里插入图片描述

参考论文:DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems

LHUC网络(Learning Hidden Unit Contributions)

交叉网络应用在shared bottom部分。
在这里插入图片描述

  • LHUC 起源于语音识别 [1]。
  • 快手将 LHUC 应用在推荐精排 [2],称作 PPNet。
    在这里插入图片描述
    这里的神经网络结构为:[多个全连接层] --> [Sigmoid 乘以2],这样输出向量元素值介于[0, 2]之间,和语音引号做哈达玛乘积后,起到部分信号放大、部分信号缩小的作用。

推荐系统排序模型中的应用方法:将语音信号替换为物品特征,说话者的特征替换为用户特征即可。

  1. Learning Hidden Unit Contributions for Unsupervised Acoustic Model Adaptation
  2. 快手落地万亿参数推荐精排模型

SENet & Bilinear Cross

Squeeze-and-Excitation Networks

SENet

在这里插入图片描述
在这里插入图片描述
当然离散特征Embedding 向量维度也可以不同,如下:
在这里插入图片描述

  • SENet 对离散特征做 field-wise 加权。
  • Field:
    • 用户 ID Embedding 是 64 维向量。
    • 64 个元素算一个 field,获得相同的权重。
  • 如果有 𝑚 个 fields,那么权重向量是 𝑚 维。

Field 间特征交叉

在这里插入图片描述

Bilinear Cross(內积)

在这里插入图片描述
在这里插入图片描述

Bilinear Cross(哈达玛乘积)

在这里插入图片描述

FiBiNet

在这里插入图片描述

FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP_wendi

谢谢您的支持。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值