(1)工业界推荐系统-小红书推荐场景及内部实践【业务指标、链路、ItemCF】
(2)工业界推荐系统-小红书推荐场景及内部实践【UserCF、离线特征处理】
(3)工业界推荐系统-小红书推荐场景及内部实践【矩阵补充、双塔模型】
(4)工业界推荐系统-小红书推荐场景及内部实践【正负样本选择】
(5)工业界推荐系统-小红书推荐场景及内部实践【线上召回和模型更新】
(6)工业界推荐系统-小红书推荐场景及内部实践【其他召回通道】
(7)工业界推荐系统-小红书推荐场景及内部实践【冷启动问题1】
(8)工业界推荐系统-小红书推荐场景及内部实践【冷启动问题2】
(9)工业界推荐系统-小红书推荐场景及内部实践【排序模型】
(10)工业界推荐系统-小红书推荐场景及内部实践【排序模型的特征】
(11)工业界推荐系统-小红书推荐场景及内部实践【粗排三塔模型】
推荐系统链路
Factorized Machine
线性模型
二阶交叉特征
深度交叉网络(DCN)
交叉层
交叉网络 (Cross Network)
参考论文:DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
LHUC网络(Learning Hidden Unit Contributions)
交叉网络应用在shared bottom部分。
- LHUC 起源于语音识别 [1]。
- 快手将 LHUC 应用在推荐精排 [2],称作 PPNet。
这里的神经网络结构为:[多个全连接层] --> [Sigmoid 乘以2],这样输出向量元素值介于[0, 2]之间,和语音引号做哈达玛乘积后,起到部分信号放大、部分信号缩小的作用。
推荐系统排序模型中的应用方法:将语音信号替换为物品特征,说话者的特征替换为用户特征即可。
SENet & Bilinear Cross
SENet
当然离散特征Embedding 向量维度也可以不同,如下:
- SENet 对离散特征做 field-wise 加权。
- Field:
- 用户 ID Embedding 是 64 维向量。
- 64 个元素算一个 field,获得相同的权重。
- 如果有 𝑚 个 fields,那么权重向量是 𝑚 维。
Field 间特征交叉
Bilinear Cross(內积)