bzoj3143: [Hnoi2013]游走

题目链接
给出一个 n n n个点 m m m条边的无向图,从 1 1 1号节点出发,每次等概率选择一条边移动至相邻节点,到 n n n点时结束。给出每条边的边权为该条边的编号,存在一种边的编号方案,使得该非简单路径边权和的期望最小,求出该期望值。
不论我们如何编号,每条边的期望经过次数是不会变的,要使得边权和的期望最小,只需要贪心地使期望次数和边权倒序对应即可。
考虑如何求每条边的经过次数,记每个点度数为 d i d_i di,期望通过次数为 x i x_i xi,每条边期望通过次数为 y i y_i yi x n = 1 , x 1 = 1 + ∑ ( 1 , j ) ∈ E x j d j , x i = ∑ ( i , j ) ∈ E x j d j ( 1 &lt; i &lt; n ) , y i = x u i d u i + x v i d v i x_n=1,x_1=1+\sum_{(1,j)\in E}\frac{x_j}{d_j},x_i=\sum_{(i,j)\in E}\frac{x_j}{d_j}(1&lt;i&lt;n),y_i=\frac{x_{u_i}}{d_{u_i}}+\frac{x_{v_i}}{d_{v_i}} xn=1,x1=1+(1,j)Edjxj,xi=(i,j)Edjxj(1<i<n),yi=duixui+dvixvi
变形化简一下高斯消元就可以了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
 
const int N = 550, M = N*N/2;
 
long double a[N][N], x[N], y[N];
int n, m, d[N];
 
struct edge {
    int u, v;
    long double t;
    inline void init() {
        scanf("%d%d", &u, &v); ++d[u], ++d[v];
    }
    inline void calc() {
        t = x[u] / d[u] + x[v] / d[v];
    }
    inline bool operator < (const edge &rhs) const {
        return t < rhs.t;
    }
}lib[M];
 
inline void work() {
    for (int i = 1; i <= n; i++) a[i][i] = 1;
    y[1] = 1;
    for (int i = 1; i <= m; i++) {
        int u = lib[i].u, v = lib[i].v;
        a[u][v] = -1.0 / (long double)d[v];
        a[v][u] = -1.0 / (long double)d[u];
    }
    n--;
    for (int i = 1; i < n; i++)
        for (int j = i + 1; j <= n; j++) {
            long double lamda = - a[j][i] / a[i][i]; a[j][i] = 0; y[j] += y[i] * lamda;
            for (int k = i + 1; k <= n; k++)
                a[j][k] += a[i][k] * lamda;
        }
    for (int i = n; i >= 1; i--) {
        for (int j = i + 1; j <= n; j++)
            y[i] -= a[i][j] * x[j];
        x[i] = y[i] / a[i][i];
    }
}
 
int main() {
    cin >> n >> m;
    for (int i = 1; i <= m; i++) lib[i].init();
    work();
    for (int i = 1; i <= m; i++) lib[i].calc();
    sort(lib + 1, lib + 1 + m);
    long double ans = 0;
    for (int i = 1; i <= m; i++) ans += lib[i].t * (m + 1 - i);
    printf("%.3Lf\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值