题目描述
设计并实现TopKRecord结构,可以不断地向其中加入字符串,并且可以根据字符串出现的情况随时打印加入次数最多的前k个字符串。具体为:
1)k在TopKRecord实例生成时指定,并且不再变化(k是构造TopKRecord的参数)。
2)含有 add(String str)方法,即向TopKRecord中加入字符串。
3)含有 printTopK()方法,即打印加入次数最多的前k个字符串,打印有哪些字符串和对应的次数即可,不要求严格按排名顺序打印。
4)如果在出现次数最多的前k个字符串中,最后一名的字符串有多个,比如现次数最多的前3个字符串具体排名为:A 100次 B 90次 C 80次 D 80次 E 80次,其他任何字符串出现次数都不超过80次
那么只需要打印3个,打印ABC、ABD、ABE都可以。也就是说可以随意抛弃最后一名,只要求打印k个
要求:
1)在任何时候,add 方法的时间复杂度不超过 O(logk)
2)在任何时候,printTopK方法的时间复杂度不超过O(k)。
思路分析
本质上是一个加强堆,就是在堆中加入一个反向索引hash结构,然后实现堆的两个基本方法heapinsert &heapify,一个是向上渲染规划堆,一个是向下渲染。
在不断加入字符串的过程中,将新出现的字符与次数加入堆的末尾与hash表中,然后将原本就存在的字符,从hash表中取出所在的索引,然后把这个值+1,之后调用heapinsert&heapify,两个函数实际只会执行一次。
这样堆数组的前K打印的时间复杂度就是O(k)
add的方法因为是堆的规划,本质上是分治,所以时间复杂度是O(logk)
代码
#include<iostream>
#include<vector>
#include<string>
using namespace std;
struct heapNode {
int time;
string str;
heapNode(int i = 1) :time(i), str("a") {}
};
class TopKRecord {
public:
void add(string str);
void printTopK(int time);
void heapinsert();
private:
vector<heapNode>myheap;
bool flag = false;
int index = 0;
};
inline
void TopKRecord::add(string input) {
flag=false;
for (int i = 0; i < myheap.size(); i++) {
//大顶堆里面存储了该字符串
if (myheap[i].str == input) {
myheap[i].time++;
index = i;
flag = true;
break;
}
}
//大顶堆中没有存储该字符串
if (!flag) {
heapNode node;
node.str = input;
myheap.push_back(node);
index = myheap.size() - 1;
}
//调节最新加入的字符串所在节点在大顶堆汇总的位置
heapinsert();
}
inline
void TopKRecord::heapinsert() {
//每次与父节点进行比较。如果比父节点大,则与父节点交换位置
//父节点索引位置 (i-1)/2
int father = (index - 1) / 2;
heapNode node;
/*
退出循环的条件:
1、父节点比该节点大
2、该节点已经移动到数组的根节点
*/
while (true) {
if (index > 0 && myheap[index].time > myheap[father].time) {
node = myheap[index];
myheap[index] = myheap[father];
myheap[father] = node;
index = father;
father = (index - 1) / 2;
}
else {
break;
}
}
}
inline
void TopKRecord::printTopK(int time) {
for (int i = 0; i < time; i++) {
cout << myheap[i].str << " " << myheap[i].time << endl;
}
}
int main() {
vector<string>str = { "a","a","a","b","c","a","b","c","a" };
TopKRecord myheap;
for (auto i : str)
myheap.add(i);
myheap.printTopK(2);
return 0;
}