给你一份 n 位朋友的亲近程度列表,其中 n 总是 偶数 。
对每位朋友 i,preferences[i] 包含一份 按亲近程度从高到低排列 的朋友列表。换句话说,排在列表前面的朋友与 i 的亲近程度比排在列表后面的朋友更高。每个列表中的朋友均以 0 到 n-1 之间的整数表示。
所有的朋友被分成几对,配对情况以列表 pairs 给出,其中 pairs[i] = [xi, yi] 表示 xi 与 yi 配对,且 yi 与 xi 配对。
但是,这样的配对情况可能会是其中部分朋友感到不开心。在 x 与 y 配对且 u 与 v 配对的情况下,如果同时满足下述两个条件,x 就会不开心:
x 与 u 的亲近程度胜过 x 与 y,且
u 与 x 的亲近程度胜过 u 与 v
返回 不开心的朋友的数目 。
示例 1:
输入:n = 4, preferences = [[1, 2, 3], [3, 2, 0], [3, 1, 0], [1, 2, 0]], pairs = [[0, 1], [2, 3]]
输出:2
解释:
朋友 1 不开心,因为:
- 1 与 0 配对,但 1 与 3 的亲近程度比 1 与 0 高,且
- 3 与 1 的亲近程度比 3 与 2 高。
朋友 3 不开心,因为:
- 3 与 2 配对,但 3 与 1 的亲近程度比 3 与 2 高,且
- 1 与 3 的亲近程度比 1 与 0 高。
朋友 0 和 2 都是开心的。
示例 2:
输入:n = 2, preferences = [[1], [0]], pairs = [[1, 0]]
输出:0
解释:朋友 0 和 1 都开心。
示例 3:
输入:n = 4, preferences = [[1, 3, 2], [2, 3, 0], [1, 3, 0], [0, 2, 1]], pairs = [[1, 3], [0, 2]]
输出:4
提示:
2 <= n <= 500
n 是偶数
preferences.length == n
preferences[i].length == n - 1
0 <= preferences[i][j] <= n - 1
preferences[i] 不包含 i
preferences[i] 中的所有值都是独一无二的
pairs.length == n/2
pairs[i].length == 2
xi != yi
0 <= xi, yi <= n - 1
每位朋友都 恰好 被包含在一对中
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-unhappy-friends
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
首先需要一个数据结构来快速查询某个人对另一个人的好感度,这个一般是用 n * n 的矩阵。
其次给定一个人,需要确定 TA 分配的对象,所以用字典。
剩下的就是直接模拟。
时间复杂度:O(N^2)
空间复杂度:O(N^2)
class Solution(object):
def unhappyFriends(self, n, preferences, pairs):
"""
:type n: int
:type preferences: List[List[int]]
:type pairs: List[List[int]]
:rtype: int
"""
# 建立亲密度矩阵,prefer_degrees[i][j]即为 i 对 j 的亲密度
prefer_degrees = [[-n-1 for _ in range(n)] for _ in range(n)]
for i, preference in enumerate(preferences):
for degree, j in enumerate(preference):
prefer_degrees[i][j] = -degree
# 建立配对字典,给定x, ppl2friends[x]即为 x 分配的朋友
ppl2friends = dict()
for x, y in pairs:
ppl2friends[x] = y
ppl2friends[y] = x
def isUnhappy(x):
# 判定 x 是否快乐
y = ppl2friends[x]
for u in range(n):
v = ppl2friends[u]
if x != u and prefer_degrees[x][u] > prefer_degrees[x][y] and \
prefer_degrees[u][x] > prefer_degrees[u][v]:
return 1
return 0
return sum([isUnhappy(i) for i in range(n)])