给你一个链表的头节点 head
。
移除每个右侧有一个更大数值的节点。
返回修改后链表的头节点 head
。
示例 1:
输入:head = [5,2,13,3,8] 输出:[13,8] 解释:需要移除的节点是 5 ,2 和 3 。 - 节点 13 在节点 5 右侧。 - 节点 13 在节点 2 右侧。 - 节点 8 在节点 3 右侧。
示例 2:
输入:head = [1,1,1,1] 输出:[1,1,1,1] 解释:每个节点的值都是 1 ,所以没有需要移除的节点。
提示:
- 给定列表中的节点数目在范围
[1, 105]
内 1 <= Node.val <= 105
第一种思路:
生成的结果链表刚好是递减的,用单调递减栈即可求解。
时间复杂度:O(N)
空间复杂度:O(N)
class Solution:
def removeNodes(self, head: Optional[ListNode]) -> Optional[ListNode]:
# mono decreasing stack
p = head
stack = []
while p:
while stack and stack[-1].val < p.val:
stack.pop()
stack.append(p)
p = p.next
res = stack[0]
p = res
for node in stack[1:]:
p.next = node
p = p.next
return res
第二种思路:
从递归的角度出发,假设从第二个节点开始的链表已经处理好了,我们叫它 next_res。
根据题意,next_res 一定是后面最大的那个节点,把这个节点跟 head 作比较来判断 要不要把 head 放到结果里即可。
时间复杂度:O(N)
空间复杂度:O(N)
class Solution:
def removeNodes(self, head: Optional[ListNode]) -> Optional[ListNode]:
if not head:
return head
next_res = self.removeNodes(head.next)
if next_res:
if head.val >= next_res.val:
head.next = next_res
return head
else:
return next_res
else:
return head