给你一个正整数数组 arr
,考虑所有满足以下条件的二叉树:
- 每个节点都有 0 个或是 2 个子节点。
- 数组
arr
中的值与树的中序遍历中每个叶节点的值一一对应。(知识回顾:如果一个节点有 0 个子节点,那么该节点为叶节点。) - 每个非叶节点的值等于其左子树和右子树中叶节点的最大值的乘积。
在所有这样的二叉树中,返回每个非叶节点的值的最小可能总和。这个和的值是一个 32 位整数。
示例:
输入:arr = [6,2,4]
输出:32
解释:
有两种可能的树,第一种的非叶节点的总和为 36,第二种非叶节点的总和为 32。
24 24
/ \ / \
12 4 6 8
/ \ / \
6 2 2 4
提示:
2 <= arr.length <= 40
1 <= arr[i] <= 15
- 答案保证是一个 32 位带符号整数,即小于
2^31
。
思路:
本题类似最近亚麻的OA题,零件合并:
区别在于,亚麻的面试题里合并的开销是两者之和,
而本题合并的开销是两者之积。
根据贪心的思想,越大的数字用来合并的次数应该越少,这样才能实现题目中求最小值的要求。
因此,我们每次应当考虑,把数组里当前的最小值和它左右较小的那个值进行合并,
合并完成后,把这两个数的乘积加到答案里,然后把最小值删去不再考虑,
当数组中只剩下一个数字时候,就可以结束循环,
注意判断左右邻居不存在的边界情况。
class Solution(object):
def mctFromLeafValues(self, arr):
"""
:type arr: List[int]
:rtype: int
"""
res = 0
while len(arr) > 1:
min_val = min(arr)
idx = arr.index(min_val)
if idx > 0 and idx < len(arr) - 1: #有左有右
left_val, right_val = arr[idx - 1], arr[idx + 1]
elif idx == len(arr) - 1: #有左没右
left_val, right_val = arr[idx - 1], 16 #为什么是16?因为最大只有15
elif idx == 0: #有右没左
left_val, right_val = 16, arr[idx + 1]
res += min(min_val * left_val, min_val * right_val)
arr.remove(min_val) #把当前最小值删掉,已经用完了
return res