1.Multitask learning for large-scale semantic change detection (2019 Computer Vision and Image Understanding)
1.提出1个用于变化检测的数据集:https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset
2.在既有图像的语义标注,又有图像的变化检测的标注时,比较4种变化检测的策略
其中,在第4种学习策略中,有两种训练策略:
4.1:损失函数为语义分割预测损失和变化检测预测损失的加权和,通过遍历找到最合适的超参数(损失权重)
4.2:先单独学习语义分割分支,然后固定该分支后,在学习变化检测分支
较详细的网络结构:
其他文献:
计算每个像素的描述符,计算描述符间的欧拉距离
我们能不能也计算每个像素周围区域的描述符的欧拉距离,记录超过阈值则表示此处找不到匹配,很可能为变化
Zoom out CNNs features for optical remote sensing change detection. In: Int. Conference on Image, Vision and Computing. pp.
2.Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images
步骤:
(1)用孪生网络对图像中的每个像素提取特征(16维),设计损失函数使得提取的特征满足:没有变化的地区特征差异小,变化的地区特征差距大
损失函数:
(2)训练好网络后,通过阈值法和KNN方法得到最后的change map
相关文献:
In [7], a symmetric convolutional coupling network (SCCN) is applied to detect changes between optical
and SAR images 不同源的图像的处理
3.Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery(2019 TGAS)
1.使用卷积提取空间相关特征
2.使用RNN提取两幅图时间相关特征,并测试了多种卷积结构
循环神经网络的内部网络图:
作者测试了3种循环神经网络
结果:
4.ChangeNet: Learning to Detect Changes in Satellite Images (2019 In 3rd ACM SIGSPATIAL International Workshop)
(1)生成器G是基于UNet的:The generator/change detector network G based on U-Net is built as a convolutional autoencoder with skip connections between mirrored layers in the encoder and decoder stacks, and adds a layer of Atrous Spatial Pyramid Pooling (ASPP) to robustly segment objects at multiple scales。生成器训练时的损失包括分类损失(Lseg)和Ladv
(2)鉴别器D是常规的分割网络:D输出是二维结果,每个像素表示一个真假的概率
训练数据:自己合成的数据,移除建筑和道路,然后用CycleGan增加季节变化和光照,反光变化等