变化检测文献总结

1.Multitask learning for large-scale semantic change detection (2019 Computer Vision and Image Understanding)

1.提出1个用于变化检测的数据集:https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset
2.在既有图像的语义标注,又有图像的变化检测的标注时,比较4种变化检测的策略
在这里插入图片描述
其中,在第4种学习策略中,有两种训练策略:
4.1:损失函数为语义分割预测损失和变化检测预测损失的加权和,通过遍历找到最合适的超参数(损失权重)
4.2:先单独学习语义分割分支,然后固定该分支后,在学习变化检测分支

较详细的网络结构:
在这里插入图片描述

其他文献:
计算每个像素的描述符,计算描述符间的欧拉距离
我们能不能也计算每个像素周围区域的描述符的欧拉距离,记录超过阈值则表示此处找不到匹配,很可能为变化

Zoom out CNNs features for optical remote sensing change detection. In: Int. Conference on Image, Vision and Computing. pp.

2.Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images

步骤:
(1)用孪生网络对图像中的每个像素提取特征(16维),设计损失函数使得提取的特征满足:没有变化的地区特征差异小,变化的地区特征差距大
损失函数:在这里插入图片描述
(2)训练好网络后,通过阈值法和KNN方法得到最后的change map

在这里插入图片描述

相关文献:
In [7], a symmetric convolutional coupling network (SCCN) is applied to detect changes between optical
and SAR images 不同源的图像的处理

3.Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery(2019 TGAS)

1.使用卷积提取空间相关特征
2.使用RNN提取两幅图时间相关特征,并测试了多种卷积结构
在这里插入图片描述
循环神经网络的内部网络图:
作者测试了3种循环神经网络
在这里插入图片描述

结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.ChangeNet: Learning to Detect Changes in Satellite Images (2019 In 3rd ACM SIGSPATIAL International Workshop)

在这里插入图片描述
(1)生成器G是基于UNet的:The generator/change detector network G based on U-Net is built as a convolutional autoencoder with skip connections between mirrored layers in the encoder and decoder stacks, and adds a layer of Atrous Spatial Pyramid Pooling (ASPP) to robustly segment objects at multiple scales。生成器训练时的损失包括分类损失(Lseg)和Ladv
(2)鉴别器D是常规的分割网络:D输出是二维结果,每个像素表示一个真假的概率

训练数据:自己合成的数据,移除建筑和道路,然后用CycleGan增加季节变化和光照,反光变化等

在这里插入图片描述

### 关于深度学习目标检测的最新研究论文 对于希望了解基于深度学习的目标检测领域内最新的研究成果以及文献综述的人来说,可以从多个角度出发寻找资源。一方面,在正式出版物方面,期刊《传感器与微系统》上发表了由包晓敏等人撰写的文章《基于深度学习的目标检测算法综述》,该文章总结并讨论了多种主流的目标检测技术及其应用场景和发展趋势[^4]。 另一方面,随着计算机视觉社区对3D感知任务的关注度不断提高,有关基于激光雷达设备实现三维空间内的物体识别也成为了热点话题之一。这类工作不仅限于传统意义上的图像处理,还涉及到多模态数据融合等问题的研究进展被记录下来,并且有专门针对自动驾驶场景下的应用实例进行了探讨[^2]。 此外,为了获取更加全面的信息,还可以关注一些高质量会议如CVPR、ICCV等发布的年度最佳论文列表,这些会议上展示的技术往往代表了当前最前沿的发展方向。同时利用Web of Science核心合集数据库或中国知网(CNKI),按照特定关键词组合进行精确搜索也是有效的途径之一。例如,“remote sensing”,“change detection”,“deep learning”这样的术语可以帮助定位到专注于遥感影像变化监测方面的深度学习方法论上的创新成果[^3]。 ```python import requests from bs4 import BeautifulSoup def fetch_latest_papers(): url = "https://arxiv.org/list/cs.CV/new" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') papers_info = [] for item in soup.select('.meta'): title = item.find('div', class_='list-title').text.strip().replace("Title:", "").strip() authors = item.find('div', class_='list-authors').text.replace("Authors:\n", "").strip() summary = item.find('p', class_='mathjax').text paper_data = { 'title': title, 'authors': authors, 'summary': summary[:100]+'...' # 只取摘要前100字符作为预览 } papers_info.append(paper_data) return papers_info papers = fetch_latest_papers()[:5] # 获取最近五篇新发布论文信息 for idx, p in enumerate(papers, start=1): print(f"{idx}. {p['title']}\n作者: {p['authors']}\n简介:{p['summary']}") ``` 此段Python代码展示了如何抓取来自ArXiv网站的新近提交至计算机视觉类别下的几篇学术报告概要,供读者快速浏览感兴趣的主题内容。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值